
SANDIA REPORT
SAND2021-12371
Unclassified Unlimited Release
Printed October 4, 2021

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

A-SST Initial Specification
A. Rodrigues, S.D. Hammond, S. Hemmert, C. Hughes, J. Kenny, and G. Voskuilen
Sandia National Laboratories
Albuquerque, NM 87185
{afrodri, sdhammo, kshemme, chughes, jpkenny, grvosku}@sandia.gov

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

A-SST Initial Specification

A. Rodrigues, S.D. Hammond, S. Hemmert, C. Hughes, J. Kenny, and G. Voskuilen
Center for Computing Research, Sandia National Laboratories, Albuquerque, NM 87185

SAND2021-12371

3

ABSTRACT

The U.S. Army Research Office (ARO), in partnership with IARPA, are investigating innovative,
efficient, and scalable computer architectures that are capable of executing next-generation large-
scale data-analytic applications. These applications are increasingly sparse, unstructured, non-
local, and heterogeneous.

Under the Advanced Graphic Intelligence Logical computing Environment (AGILE) program, Per-
former teams will be asked to design computer architectures to meet the future needs of the DoD
and the Intelligence Community (IC). This design effort will require flexible, scalable, and detailed
simulation to assess the performance, efficiency, and validity of their designs.

To support AGILE, Sandia National Labs will be providing the AGILE-enhanced Structural Sim-
ulation Toolkit (A-SST). This toolkit is a computer architecture simulation framework designed to
support fast, parallel, and multi-scale simulation of novel architectures. This document describes
the A-SST framework, some of its library of simulation models, and how it may be used by AGILE
Performers.

4

CONTENTS

Nomenclature . 7

1. A-SST 9
1.1. A-SST Overview . 9
1.2. A-SST and AGILE . 10
1.3. A-SST Architecture . 10

1.3.1. Core and Elements . 10
1.3.2. Key Objects . 11
1.3.3. Parallelism . 12
1.3.4. Simulation Lifecycle . 13

2. Key A-SST Elements 15
2.1. Memory Hierarchy Components . 15
2.2. Processor Components . 16
2.3. Network Components . 18

2.3.1. Network Endpoints . 18
2.3.2. Network Models . 20

2.4. Low-Level Models . 21

3. Usage Scenarios 23
3.1. General Usage Scenarios . 23
3.2. Multi-Fidelity Simulation . 25
3.3. Runtime Modeling . 26

4. Additional Information 28

References 29

5

LIST OF FIGURES

Figure 1-1. A-SST Core and Components . 11
Figure 1-2. A-SST Key Objects . 12
Figure 1-3. For best performance, components should be partitioned along high-latency links 12

Figure 2-1. Example MemHierarchy simulation showing multiple levels of cache and mul-
tiple main memory types. Addresses can be interleaved or blocked between
memory types. 16

Figure 2-2. Ariel Processor Model . 17
Figure 2-3. Vanadis Use Concepts . 18
Figure 2-4. Ember/Hermes/Firefly Stack . 19
Figure 2-5. Compiler-based skeletonization of an application for simulation 20
Figure 2-6. Merlin hr_router Internals . 20
Figure 2-7. RTL-level Simulation Workflow with ESSENT and SST . 21
Figure 2-8. ESSENT Parser Inputs and Outputs . 22

Figure 3-1. (A) General A-SST Usage Scenario for Performers and (B) Hypothetical Mem-
ory Exploration Example . 23

Figure 3-2. Multi-Fidelity and Multi-Resolution Usage Scenarios . 25
Figure 3-3. Skeletonizer . 26

6

Nomenclature

A-SST AGILE-enhanced Structural Simulation Toolkit

Clean Sheet A design methodology that starts without a preconceived design or other concepts.
The effort is driven by the required application capabilities. This approach does not drive the
effort to utilize existing design components.

Component An SST::Component object. It represents a model of a hardware component (e.g.
cache, core, queue).

Event An SST::Event object. This structure contains a single discrete event that can be delivered
from one component to another.

HDL Hardware Description Language

High-level Model A model of a portion of the computer system that provides functionally correct
results and approximate timing.

Link An SST::Link object. This represents a connection between two SST Components over
which SST Events can be transmitted.

Low-level Model A detailed model written in RTL used to validate correctness and cycle-accurate
performance.

Mixed-Fidelity Simulation A simulation methodology in which less scalable, more detailed
simulation models and faster, more abstract simulation models are run together in the same
simulation.

Multi-Fidelity Simulation A simulation methodology in which less scalable, more detailed sim-
ulations are used to parameterize faster, more abstract simulations.

NoC Network-on-Chip

RTL Register Transfer Language

T&E Test and Evaluation

7

This page intentionally left blank.

8

1. A-SST

Performer teams in the IARPA AGILE program will be tested and evaluated using the AGILE-
enhanced Structural Simulation Toolkit (A-SST), which is derived from Sandia National Labs’
Structural Simulation Toolkit1[18]. Under this program it is the Performer’s responsibility to en-
sure interoperability of their models with the A-SST framework.

1.1. A-SST Overview

SST is an open-source computer architecture simulation toolkit developed to explore innovations
in highly concurrent systems in the HPC and embedded space. Key features of SST:

• Parallel: SST is built from the ground up to be parallel. At its heart, SST is a component-
based parallel discrete event simulator (PDES) with clocking that uses a conservative distance-
based optimization over MPI and C++ Threads.

• Multi-scale: SST does not dictate a specific level of simulation. It can and has been used
for detailed gate-level simulation, high-level runtime algorithm evaluation, abstract state
machine-based simulations, and even non-computer simulations such as car washes. SST
aims to provide a variety of simulation models “out of the box” which include both detailed
and simple models for processors, network components, and memories.

• Interoperable: SST allows easy integration with a variety of simulators including RTL
language tools, behavioral simulators, and commonly used simulators like GPGPU-Sim and
Gem5.

• Open: SST is open source software released under a permissive license2. It allows redistri-
bution and use in source and binary forms, with or without modification. To facilitate this
on a software engineering level, the toolkit is designed to be modular and extendable with-
out requiring pervasive changes. Individual component models can be added without any
changes to the simulator core.

A-SST will be a development branch of SST with additional enhancements to support the AGILE
program.

1SST’s main website is http://sst-simulator.org/ and the open Git repository is https://github.com/
sstsimulator/.

2https://github.com/sstsimulator/sst-elements/blob/master/LICENSE

9

http://sst-simulator.org/
https://github.com/sstsimulator/
https://github.com/sstsimulator/
https://github.com/sstsimulator/sst-elements/blob/master/LICENSE

1.2. A-SST and AGILE

For the AGILE program, A-SST’s goal is to provide Performers with a flexible simulation and
testing framework. This will allow rapid design of system components and rapid modeling of
the AGILE Applications. To support Performer productivity, the AGILE program will provide a
number of example and baseline simulation configurations to demonstrate AGILE workflows with
existing SST component models. However, the goal of the AGILE program is to enable “clean
sheet” designs which are free from preconceived design concepts and are driven by application
needs. As such, Performers are not required to use any existing SST component models in their
designs.

As a direct branch of SST, A-SST will maintain these key features. In Phase 1 of AGILE it is
expected that components will be represented by high-level models – models written in high-
level languages that show functional correctness and approximate timing. In Phase 2 of AGILE,
Performers will produce RTL designs for use in A-SST and on FPGA platforms. Use of FPGAs
will allow more precise timing estimates and enable the T&E teams to perform validation and
verification. Performers will need to prove that their designs work at a node-level and also at
scale. Due to the limitations of simulation speed and available resources, at-scale simulation will
require multi-fidelity or multi-resolution modeling where detailed, but non-scalable, simulation
models and FPGA emulation runs are used to inform faster, more scalable abstracted models (See
Section3.2).

1.3. A-SST Architecture

1.3.1. Core and Elements

A-SST is divided into two principal regions (Figure 1-1):

• The Core3 includes the PDES capabilities that enable simulation. It also provides utilities
and interfaces for simulation components (models) such as clock creation, event exchange
and serialization, some common interfaces, statistics and parameter management, and paral-
lelism support.

• The Element4 libraries encapsulate the simulation models. Most importantly, element li-
braries contain component objects that perform the actual simulation (e.g. a processor core,
cache, network router, etc...) and event objects that are the discrete event structures commu-
nicated between components (e.g. memory request, network packet, etc...).

3https://github.com/sstsimulator/sst-core
4https://github.com/sstsimulator/sst-elements

10

https://github.com/sstsimulator/sst-core
https://github.com/sstsimulator/sst-elements

Integration Services

MPI and C++ Threads

Co
m
po

ne
nt

Co
m
po

ne
nt

Co
m
po

ne
nt

Co
m
po

ne
nt

SST Core

Figure 1-1. A-SST Core and Components

1.3.2. Key Objects

SST’s Core and most elements are written in C++. The SST Core is limited to C++11 for portabil-
ity, though elements are not restricted. The basic object structure of A-SST is simple (Figure 1-2).
Writing a basic component requires only a handful of object types:

• SST::Component contains the actual simulation logic and state for a piece of hardware
(e.g. cache, processor core, etc...).

• SST::Event a discrete event description that can be passed between components. User-
specified events (which inherit from SST’s base event class) can contain arbitrary data. If
events need to be passed between components in a parallel simulation they will need to be
serializable and provide a method for doing so.

• SST::Link represents a connection between two components over which SST::Events
may be passed. Links are bidirectional and point-to-point. Each link is specified with a
minimum latency to assist with parallel performance (See Section 1.3.3).

• (Optional) Event Handler is a function object within a component that is invoked when an
event arrives (i.e. is “pushed” to the component) over an SST::Link. Components are not
required to have event handlers, but if they do not they will need to “pull” events from the
link, usually in a clock handler.

• (Optional) Clock Handler is a function object within a component that is invoked at a reg-
ular interval, equivalent to a clock edge. Within a clock handler, components can advance
their state and send and recieve events.

11

SS
T:
:L
in
k

SST::Component

EventHandler

SST::Component

EventHandler

SST::Event

SST::Event

Figure 1-2. A-SST Key Objects

1.3.3. Parallelism

A-SST can use both threads and MPI to achieve parallelism. This is transparently handled by the
SST Core, so components should never make an MPI call. For parallel simulation, events will
need to be serializable. The core is conservative (i.e. no roll-back) and uses a distance-based
optimization so sets of simulation components on each rank are only synchronized when needed
to ensure correct message ordering.

SST
Component
Cache

SST
Component
Router

SST
Component
Router

SST Link
Latency:

20ns

SST Link
Latency:

1us

SST Link
Latency:
500ns

SST
Component
Cache

SST
Component

Core

SS
T

Li
nk

La
te

nc
y:

5n

s

SST
Component

Core

SS
T

Li
nk

La
te

nc
y:

5n

s

Figure 1-3. For best performance, components should be partitioned along high-latency links

Parallel execution over MPI requires that components be partitioned and assigned to MPI ranks
(Figure 1-3). To maximize parallel performance, this partitioning should load balance (so roughly
equal amounts of work occur on each rank) and partition on high-latency links (so synchronization
is less frequent). A-SST users can specify a manual partitioning, write their own partitioning
algorithm, or use one of A-SST’s provided algorithms:

• linear: Partitions components by dividing Component ID space into roughly equal portions.
Components with sequential IDs will be placed close together.

12

• round-robin: Partitions components using a simple round robin scheme based on Compo-
nentID. Sequential IDs will be placed on different ranks.

• simple: Simple partitioning scheme which attempts to partition on high latency links while
balancing the number of components per rank.

• zoltan: Uses the Zoltan[7] parallel partitioner (deprecated).

• single: Allocates all components to rank 0. Automatically selected for serial jobs.

• self: Used when partitioning is already manually specified by the user in the configuration
file.

1.3.4. Simulation Lifecycle

Each SST simulation follows a standard “lifecycle”:

1. Configure SST is configured with a Python script that specifies the components, their ini-
tialization parameters, links between the components, and other simulation configurations.
The SST Core starts a simulation by reading the Python configuration file.

2. Create Graph SST will then create a connected graph of all the components in the simula-
tion, and partition the graph (see Section 1.3.3) between MPI ranks and/or threads.

3. Instantiate Each MPI Rank in the SST simulation receives its potion of the partitioned graph
and instantiates its components (i.e. calls their constructors).

4. Connect SST links are created and each component is connected as specified in the Python
configuration script.

5. Initialize Once constructed, the components enter a multi-phase initialization period during
which they may exchange data in an untimed fashion. This initialization period is generally
used for network self-discovery, additional link parameter negotiation, and for loading exe-
cutables in to memory. This initialization is contained in each component’s init() function
which is invoked repeatedly until all components’ initialization is complete.

6. Setup Immediately before timed simulation begins, each component’s setup() function is
called, allowing any final configuration or initialization.

7. Simulate The actual simulation is a series of activities during which clock functions are
invoked on components, events are sent and recieved between components, and time is ad-
vanced. Parallel synchronization and communication of events between components on
different ranks or threads is handled by the SST Core. Simulation continues until a user-
specified time or until all components indicate they are done.

8. Complete Similar to the initialization period, a multi-phase completion period occurs im-
mediately after simulation (using each component’s complete() function.

9. Finalize Similar to the Setup stage, each component’s finish() function is called.

13

10. Output Statistics are output5.

11. Cleanup Component destructors are called and the SST Core shuts down.

5See http://sst-simulator.org/SSTPages/SSTDeveloperSSTStatisticsAPI/ for more information on
SST’s statistics API

14

http://sst-simulator.org/SSTPages/SSTDeveloperSSTStatisticsAPI/

2. KEY A-SST ELEMENTS

A-SST’s standard distribution contains a variety of element libraries and components. These com-
ponents will be used to construct example architectures which demonstrate the AGILE workflows.
They may be used, extended, and modified by Performers, but are not required to be used.

The following sections give brief overviews of several important components and element libraries
in SST.

2.1. Memory Hierarchy Components

memHierarchy is a large set of components for modeling the memory hierarchy. It includes
parametrizable caches, scratchpads, busses, connections to on-chip networks, directory controllers,
and a variety of memory controllers. Through the Cassini element library, memHierarchy can
access a a set of modular and composable prefetchers that use standard prefetching heuristics.
MemHierarchy allows arbitrary-depth cache hierarchies and memory topologies, allowing com-
plex systems to be modeled (Figure 2-1). Because the memory system plays such a central role in
the node, memHierarchy is used to connect a variety of other SST components. Some of the main
memory models it supports include:

• SimpleMemory: A simple fixed-timing model for main memory that is inaccurate but very
fast.

• SimpleDRAM: A simple DRAM model that accounts for basic DDR parameters (tCAS,
tRCD, and tRP) and bank contention.

• TimingDRAM: A moderately-complex DRAM model that accounts for basic DDR timing
parameters and channel, rank, and bank contention.

• dramsim3: Connects to DRAMSim3[15] which contains very detailed models of several
DRAM protocols such as DDR3, DDR4, LPDDR3, LPDDR4, GDDR5, GDDR6, HBM,
HMC, and STT-MRAM.

• goblinHMCSim: Goblin HMC-Sim is a Hybrid Memory Cube functional simulator.

• pagedMulti: A memory backend that models a two-level main memory and a variety of
policies to move data between the levels to improve performance[8]. Internally, it uses
DRAMSim and fixed timing models.

• cramsim: Detailed modeling of DDR and HBM memory, based on CramSim[9].

• Messier: Parametrizable model of emerging non-volatile memories[2] including timing pa-
rameters and data placement policies.

15

"Quad"

Core

L1

Core

L1

L2

Core

L1

Core

L1

Merlin
Router

Directory
Controller

"Quad"

Core

L1

Core

L1

L2

Core

L1

Core

L1

DDR

Ariel Trace Capture

PIN

Directory
Controller

DDR
Directory
Controller

Logic
Layer

Stacked
Vault

Figure 2-1. Example MemHierarchy simulation showing multiple levels of cache and multiple main
memory types. Addresses can be interleaved or blocked between memory types.

2.2. Processor Components

A-SST contains a number of “processor” models ranging from simple memory traffic generators to
full cycle-approximate simulators capable of booting an OS. These models interface with memory
using the simpleMem or standardMem APIs. Some of the simulation models include:

• Miranda is a pattern-based processor model / traffic generator. Each Miranda core consists
of a request generator and a core that issues requests, retires requests, and tracks request
dependencies. It can easily be extended to produce a number of memory traffic patterns and
comes with a set of existing pattern-generators:

– CopyGenerator: Copies an array A to an array B

– RandomGenerator: Generates random accesses

– GUPSGenerator: Read followed by write to the same (random) address

– STREAMBenchGenerator: Implements triad loop from the Stream benchmark.

– InOrderSTREAMBenchGenerator: Stream benchmark with compiler optimization
to block accesses (i.e. Read chunks of B and C, then write chunk of A).

– SingleStreamGenerator: Stream of reads starting at an address and moving forwards

– ReverseSingleStreamGenerator: Stream of reads starting at an address and moving
backwards

16

– SPMVGenerator: Sparse Matrix-Vector access pattern

– Stencil3DGenerator: 3D 27-point stencil pattern

In addition, it is expected that the T&E team will produce pattern-generators for one or more
of the AGILE workloads.

• Ariel is a lightweight processor core model that receives a stream of memory accesses from
a dynamically instrumented binary. Currently, Ariel uses Intel’s PIN1 tool for dynamic in-
strumentation. It is expected that by the start of AGILE, a version based on DynamoRIO[5]2

will be available. Ariel can use existing binaries (including fixed-count multi-threaded bi-
naries) which, through dynamic instrumentation, pass a stream of events to a simple core
model in SST (Figure 2-2). These events are usually loads and stores, but can also contain
other user-defined events such as memory allocations or system calls.

Figure 2-2. Ariel Processor Model

Ariel provides a simple mechanism for prototyping and is most useful when applications are
memory- or communication-bound as the AGILE applications are expected to be.

• Prospero is a trace-based processor model. Like Ariel, it is memory instruction oriented.
Propsero reads memory operations from a file and passes them to the simulated memory
system. It supports arbitrary length reads to account for variable vector widths. SST comes
packaged with the Prospero Trace Tool to generate traces.

• Vanadis provides flexible processor core models in multiple ISAs. It has been designed
to integrate closely with SST and support a variety of use cases (Figure 2-3). Currently, it
supports the MIPS ISA with RiscV support expected by the start of the AGILE program. OS
calls are emulated.

1https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.
html

2https://dynamorio.org/

17

https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://dynamorio.org/

Vanadis
Core

@ 2.5GHz

L1D L1I

L2 (2MB)

NoC

Vanadis
Core

@ 1.0GHz

L1D L1I

L2 (128kB)

Mem Ctrl

Va
na

di
s

O
S

H
an

dl
er

Vanadis
Core

@ 1.0GHz

L1D L1I

L2 (128kB)

…

Many small cores

Bi
g

Co
re

HBM Model (CRAMSim?)

Example mix-core node design

Vanadis
Core

@ 2.5GHz

L1D L1I

L2 (2MB)

NoC

Mem Ctrl

Va
na

di
s

O
S

H
an

dl
er

Bi
g

Co
re

HBM Model (CRAMSim?)

Example accelerated node design

GPGPU
@ 1.0GHz

L2 Shim

…

Vanadis
Core

@ 2.5GHz

L1D L1I

L2 (2MB)

NoC

Mem Ctrl

Va
na

di
s

O
S

H
an

dl
er

Bi
g

Co
re

HBM Model (CRAMSim?)

Example processing in memory node design

Vanadis Core
@ 300MHz

Vanadis Core
@ 300MHz

Vanadis
Core

@ 2.5GHz

L1D L1I

L2 (2MB)

Bi
g

Co
re

…

Figure 2-3. Vanadis Use Concepts

• Gem5[16] is a flexible architecture research platform for system and microarchitecture ex-
ploration. It is in wide use in academia and industry. It is capable of booting full operating
systems and supports a number of ISAs. Gem5/SST integration work is ongoing, but cur-
rently is capable of connecting Gem5 cores and certain peripherals to SST’s memHierarchy
components.

• GPGPU-Sim[13] is a cycle-level simulator that models GPUs running CUDA. It has been
integrated with SST under the Balar[10]3 element library. Balar provides additional modu-
larity and scheduling flexibility to GPGPU-sim.

• Spike is a functional simulator of the RISC-V ISA4 built on the Miranda core model.

2.3. Network Components

A-SST contains a number of ways to represent networks and network endpoints. Endpoints inter-
face with network models using the simpleNetwork API.

2.3.1. Network Endpoints

• The Ember / Hermes / Firefly stack (Figure 2-4) is a set of related components that can
be used to create abstracted network endpoints that are very light-weight and highly scal-
able. Network simulations with one million endpoints have been performed using the Ember
family of components

Ember, Hermes, and Firefly represent a nested series of state machine-like components that
encapsulate an application’s communication pattern (or motif) and associated messaging
runtime and use it to generate a series of network events and transactions.

3https://github.com/sstsimulator/balar
4https://github.com/tactcomplabs/SSTStake

18

https://github.com/sstsimulator/balar
https://github.com/tactcomplabs/SSTStake

User
BinaryEmber Engine

Hermes API

Firefly

Network

Ember Motif

Message Passing Semantics
Collectives, Matching, etc.

Packetization and Byte Movement Engine
Generates packets and coordinates with network

Flit Level Movement, Routing, Delivery
Moves flits across network, timing, etc.

Event to Message Call, Motif Management
Handles the tracking of the motif

High Level Communication Pattern and Logic
Generates communication events

Figure 2-4. Ember/Hermes/Firefly Stack

At the top of this stack is Ember5 which packages communication patterns in to state-
machine like components. This state machine can encode a high level of complexity in
the patterns. Ember also includes generic methods for users to add new communication pat-
terns. Some example motifs include 1D, 2D, and 3D Halo exchange and communication
sweep patterns (e.g. Sweep3D). It is anticipated that the T&E teams will provide additional
motifs representing AGILE workloads or kernels.

Ember sends a series of events to the Hermes component that correspond to communication
primitives such as send, receive, or allreduce. Hermes transforms these events into network
traffic and handles message passing semantics (e.g., collectives, matching, etc...). Hermes
can currently model MPI-like and SHMEM-like communication runtimes.

At the bottom of the stack is Firefly6, which, like a NIC, handles low-level data movement
such as packetization and communication with the network. Firefly connects to Merlin net-
work models.

• SHMEMNIC is a SHMEM-based NIC that can perform load and store operations over a
disaggregated memory network. Currently, it interoperates with the Vanadis core model.

• Macro[14] is a collection of high-level network components and endpoint models to support
coarse-grained simulation of full-scale HPC systems. A key feature of the Macro model is
the use of “skeletonization” to produce endpoint models. Skeletonization is a semi-automatic
process that recompiles code, stripping out memory allocations and compute and intercept-
ing communication or other runtime calls (Figure 2-5). The resulting code can be integrated
into a simulation to emulate the concurrent execution of many virtual application processes
in a single simulator process.

Because the application’s state and compute are greatly reduced simulations can be per-
formed much more quickly while still retaining the application’s messaging pattern and

5http://sst-simulator.org/SSTPages/SSTElementEmber/
6http://sst-simulator.org/SSTPages/SSTElementFirefly/

19

http://sst-simulator.org/SSTPages/SSTElementEmber/
http://sst-simulator.org/SSTPages/SSTElementFirefly/

MPI Rank 0

Stack

Heap

Global Data

Address Space

MPI Rank 1

Stack

Heap

Global Data

Address Space

SST/Macro Process

Heap

Context
0

Context
1

Stacks

Address Space

Global
Data

MPI Rank 0

Stack

Heap

Global Data

Address Space

MPI Rank 1

Stack

Heap

Global Data

Address Space

SST/Macro Process

Heap

Context
0

Context
1

Stacks

Address Space

Global
Data

Original Execution Simulated Execution

Figure 2-5. Compiler-based skeletonization of an application for simulation

internal logic. Additionally, by intercepting runtime calls it may be possible to use skele-
tonization as an efficient mechanism for prototyping runtime or hardware-based runtime
acceleration (See Section 3.3).

2.3.2. Network Models

• Macro, in addition to providing network endpoint models, also provides coarse-grained net-
work models. These can model multiple topologies as packet-based networks.

• Merlin[6][12] is an element library for modeling High-speed system-level or NoC networks.
Merlin uses a High-radix router model (hr_router) that is based on common HPC routers.
It contains buffers, an internal cross-bar and logic for routing, flow control, and network
initialization (Figure 2-6). Merlin can handle a number of topologies including meshes,
n-dimensional tori, fat-tree, and dragonfly. There are several options for adaptive routing.
Additionally, there is a defined interface for adding new topologies to the router. Merlin can
be used as a system-level interconnect (often combined with the Ember/Firefly stack) or as
an on-chip network (usually combined with memHierarchy components).

PC

PC

PC

PC

PC

PC

PC

PC

Topology

X
B
A
R

Router

PC = PortControl

LC

LC = LinkControl

Traffic
Generator

NIC

NIC

Figure 2-6. Merlin hr_router Internals

• Kingsley is similar to Merlin, but focused on NoC networks. As such, it uses input-only
router buffering policies, unlike Merlin. Kingsley models a mesh topology.

20

• Shogun provides a crossbar NoC model.

2.4. Low-Level Models

Phase 1 of AGILE will focus on flexible high-level development of architectural components.
Phase 2 will transition to low-level models written in RTL to allow verification and validation of
functional correctness and to refine timing estimates.

The T&E team will provide ERAS[17], a framework for converting RTL models to be integrated
with SST, so Performers can use their Phase 2 designs within SST (Figure 2-7). ERAS uses
the Essential Signal Simulation Enabled by Netlist Transforms (ESSENT)[4] software package to
convert FIRRTL[11] intermediate representation code into a C++ simulator. This C++ simulator
is then parsed and ’wrapped’ in automatically generated and user-supplied code to create an SST
component. FIRRTL code can be produced from Chisel[3] sources or from Verilog[1] via the
Yosys[20] synthesis suite.

Chisel

Verilog

Chisel

YOSYS

FIRRTL ESSENT
C

Simulator

Parser
SST

Component

Figure 2-7. RTL-level Simulation Workflow with ESSENT and SST

The ERAS parser combines several inputs to create an SST component (Figure 2-8). The ES-
SENT toolchain produces a C++ header file that contains the model of the components to be
simulated. The ERAS framework’s parser combines this header file with an internal template and
user-supplied code. Predefined templates which connect common interfaces like AXI and UART
to SST’s memHierarchy components are part of ERAS. The user specifies additional code for
component creation and interfacing with SST’s Core (e.g., statistics gathering, init(), finish(),
etc...).

21

Figure 2-8. ESSENT Parser Inputs and Outputs

22

3. USAGE SCENARIOS

The goal of A-SST in the AGILE program is to provide Performers with a flexible toolkit for
exploring and developing their designs. Use of the A-SST Core is required, but the exact way
in which Performers will interface with A-SST will vary depending on Performer and AGILE
program requirements.

3.1. General Usage Scenarios

To enhance Performer productivity, the T&E team will provide several element libraries (Section 2)
of common components and A-SST configurations for executing some of the AGILE workflows
and kernels on select hardware configurations. The objective is to provide Performers with an “out
of the box” set of components and designs to quickly begin exploring the AGILE applications
and to supply a foundation for further design. However, AGILE anticipates the need for a “Clean
Sheet” design methodology. So, Performers are not required and should not feel compelled to use
any of the elements libraries or configurations for their final design.

Based on previous collaborations using SST, some possible use scenarios are shown in Figure 3-
1.

MemH
$Ariel CRAMSim

HBM2
Kingsley

NoC

App
SHMEM

NIC

More BW +Special Func.

MemH
$Ariel CRAMSim

HBM2
Performer

NoC

Tuned
App

RTS
Hooks

Performer
Scratchpad Performer

PIM

Performer
NIC

New TopologyMore BW

MemH
$Ariel CRAMSim

HBM2
Kingsley

NoC

Tuned
App

SHMEM
NIC

RTL
$RTL Core RTL

Memory
RTL
NoC

Tuned
App

RTS

RTL
Scratchpad

RTL
PIM

RTL
NIC

$Processor Main
MemoryNoC

App

Network

Parameters
Change

New
Functionality

$Processor Main
MemoryNoC

App

Network

Parameters
Change

New
Functionality

$Performer
Processor

Main
Memory

Performer
NoC

App

Network

Performer
Component

RTL
$

RTL
Processor

RTL
Memory

RTL
NoC

App
RTL

Network

RTL
Component

(1)

(2)

(3)

(4)

(A) General Scenario (B) Memory Exploration Scenario

Figure 3-1. (A) General A-SST Usage Scenario for Performers and (B) Hypothetical Memory Exploration
Example

23

One general model that Performers may follow:

1. “Out of the Box”: Starting with existing A-SST components and T&E-supplied config-
urations, Performers can immediately began examining the performance and execution of
AGILE workflows.

2. Customization: Performers begin to tune and extend existing components. To discover bot-
tlenecks and gain early insight, Performers may change parameters or add new functionality
to existing components.

3. Replacement: As designs become more detailed, Performers replace key T&E-supplied
components in the configuration with their own components and begin to add new compo-
nents. Existing A-SST components are used as a ’bridge’ to fundamentally new designs.

4. RTL: In Phase 2, Performers will replace high-level A-SST components with Performer-
written low-level RTL A-SST components. T&E-supplied or Performer-written high-level
components may be used with low-level RTL components as a ’bridge’ during development.

5. Multi-Fidelity & Mixed-Fidelity: High-level and low-level simulation is critical for design
and proving performance, but will be limited by simulation speed. To explore the scaling
properties of Performer designs, it is anticipated that multi-fidelity and/or mixed-fidelity
modeling will be required (See Section 3.2). This modeling may be performed concurrently
with steps 3 (Replacement) and 4 (RTL).

To give a more concrete hypothetical example (Figure 3-1(B)):

1. “Out of the Box”: The Performer starts with a configuration provided by the T&E team for
a given AGILE app, gathering a variety of statistics about its execution.

2. Customization: Based on the statistics gathered, the Performer identifies several bottle-
necks. To alleviate these, they examine the effect of increased bandwidth in the memHierar-
chy cache and modify the Kingsley NoC with a new topology. The application, running in
Ariel, is tuned for the new architecture.

3. Replacement: The Performer begins to elaborate their design. The tuned application is
replaced with one making calls to the Performer’s runtime. These calls are intercepted by
a modified Ariel component. A user-controlled scratchpad is added. The Kingsley NoC is
replaced with a custom NoC. The CRAMSim HBM2 model is augmented with in-memory
operations that are triggered by the runtime calls. A near-memory PIM processor is added
and the SHMEM NIC is replaced.

4. RTL: In Phase 2, the Performer begins replacing the high-level components with RTL com-
ponents.

24

3.2. Multi-Fidelity Simulation

Ensuring adequate performance of AGILE designs at scale will require simulation. However, due
to time and resource constraints it will be impossible to simulate an entire system at full scale
and full detail. Instead, it will be necessary to use Multi-Fidelity and Mixed-Fidelity simulation
methodologies.

RTL Node

Simple
Node

Simple
Node

Simple
Node

Network

Simple
Node

Simple
NodeSimple

Node
Simple
Node

Simple
Node

RTL
$RTL Core RTL

Memory
RTL
NoC

Tuned
App

RTS

RTL
Scratchpad

RTL
PIM

RTL
NIC

RTL
Memory

RTL
NoC

Simple
PIM

RTL
NIC

Simple
Core+$

RTL
$RTL Core

Tuned
App

RTS

RTL
Scratchpad

RTL
PIM Simple

Node

Simple
Node

Simple
Node

Network

Simple
Node

Simple
NodeSimple

Node
Simple
Node

RTL
Node

(a) Multi-fidelity off-line parameterization of simple models

(b) Mixed-fidelity off-line parameterization within node (c) Mixed-fidelity on-line parameterization within node

Figure 3-2. Multi-Fidelity and Multi-Resolution Usage Scenarios

Both of these methodologies combine less scalable, more detailed simulation models and faster,
more abstract models to enable scalable, yet still accurate, simulation. More detailed simulations
may include FPGA-based emulation.

There are a number of potential paths for multi-fidelity and mixed-fidelity simulation (Figure 3-2).
The exact methodology will depend on the Performer’s design. For example:

• Detailed node-level RTL models of the design are run (possibly on an FPGA) to determine
performance characteristics. These characteristics are used to parameterize simpler models
that are run at scale. (e.g. Figure 3-2(a))

• Detailed models of a core and cache and a near-memory processor are run (possibly on an
FPGA) to determine performance characteristics. These characteristics are used to construct
simple models that are run in conjunction with detailed RTL models of the NoC, memory,
and NIC at larger scale. (e.g. Figure 3-2(b))

• A small number of detailed node models are run with a large number of simple node models.
The detailed model is instrumented to provide a stream of updates to the simple models
changing their performance characteristics to reflect different phases of the application. (e.g.
Figure 3-2(c))

25

How these simple models will be constructed will depend on the specifics of the Performer’s de-
sign. A-SST will offer a number of options. Pervious work has used the Ember / Firefly stack of
components, coupled with more detailed memory models, to perform mixed-fidelity simulation.

3.3. Runtime Modeling

Modeling and simulation of the Performer’s runtime system is a key area of concern. A-SST’s
goal is to offer a range of options to Performers to allow flexible investigation and development of
AGILE runtime systems.

Runtime modeling can take advantage of several existing components:

• State Machines such as the Ember/Firefly stack can be used to generate streams of calls to a
communication runtime. On-node, generators like Miranda can be used to produce a stream
of memory accesses and also calls to a runtime. Because they are a simple state machine it
is easier to modify these components than to build a complete execution-driven runtime.

• Dynamic binary instrumentation components such as Ariel or DynamoRIO allow rapid
prototyping of modified applications because they can intercept runtime calls and communi-
cate them to the simulator.

• Execution-based processor models such as Vanadis or Gem5 can be used for detailed per-
formance measurements of runtime systems.

1) Developer
adds pragmas

3) sim++ src.cpp
Redirect MPI calls

LLVM Instrumentation
based on pragmas

4) Link to simulator with
SIM_MPI_X symbols
sim++ -o sim.x -lsim

2) Clang
source-to-source

Simulation
Endpoint

Model

Original Source Code:
double* big = new double[N];
MPI_Sendrecv(big,…);
for (i=0; i < N; ++i){
 expensive_compute();
}
MPI_Allreduce(…);

Modified Source Code:
#pragma sim null_variable
double* big = new double[N];
MPI_Sendrecv(big,…);
#pragma sim compute
for (i=0; i < N; ++i){
 expensive_compute();
}
MPI_Allreduce(…);

Auto-skeletonized
Source Code:

double* big = nullptr;
MPI_Sendrecv(big,…); //model
modelCompute(N,…);
MPI_Allreduce(…); //model

Auto-skeletonized
Object Code:

call SIM_MPI_Sendrecv(.…);
call modelCompute(N);
call SIM_MPI_Allreduce(…);

Figure 3-3. Skeletonizer

• The Macro “Skeletonizer” tool[19] can be used to assist runtime development (Figure 3-3).
This tool provides three key features:

26

– Encapsulation – converting processes of the target codes into lightweight simulation
threads. This provides a foundation for early runtime experimentation within the sim-
ulator before the entire toolchain or processor model is complete.

– Interception – intercepting calls and converting them to simulator actions allows key
runtime calls to directly invoke simulation model primitives.

– Skeletonization – expensive computations are replaced with delay models and large
allocations are removed allowing efficient, scalable simulation of key portions of a
large application or workflow.

27

4. ADDITIONAL INFORMATION

Additional A-SST resources:

• General information about SST and A-SST and announcements can be found on the project
webpage: http://sst-simulator.org/.

• The main SST GitHub page is https://github.com/sstsimulator and will contain pub-
lic A-SST information when it is released. SST/A-SST issues can be reported at http:
//sst-simulator.org/SSTPages/SSTMainSupport/.

• SST Tutorials can be found at http://sst-simulator.org/SSTPages/SSTTopDocTutorial/.
A-SST specific tutorials will be released at the project kickoff workshop.

• SST documentation is located at http://sst-simulator.org/SSTPages/SSTMainDocumentation/
and developer-specific documentation (including SST Core’s Doxygen documentation) is at
http://sst-simulator.org/SSTPages/SSTTopDocDeveloperInfo/.

• Performers can send questions about A-SST to the SST help email reflector wg-sst@sandia.gov
except during the BAA response period. While the BAA is in effect, Performer’s questions
should be sent to dni-iarpa-AGILE-BAA-2021@iarpa.gov.

28

http://sst-simulator.org/
https://github.com/sstsimulator
http://sst-simulator.org/SSTPages/SSTMainSupport/
http://sst-simulator.org/SSTPages/SSTMainSupport/
http://sst-simulator.org/SSTPages/SSTTopDocTutorial/
http://sst-simulator.org/SSTPages/SSTMainDocumentation/
http://sst-simulator.org/SSTPages/SSTTopDocDeveloperInfo/

REFERENCES

[1] Ieee standard for verilog hardware description language. IEEE Std 1364-2005 (Revision of
IEEE Std 1364-2001), pages 1–590, 2006.

[2] A. Awad, S.D. Hammond, G.R. Voskuilen, C. Hughes, A.F. Rodrigues, and R.J. Hoekstra.
Messier: A detailed nvm-based dimm model for the sst simulation framework. SAND Report
SAND2017-1830, Sandia National Labs, Albuquerque, New Mexico 87185, Feb 2017.

[3] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avižie-
nis, John Wawrzynek, and Krste Asanović. Chisel: Constructing hardware in a scala embed-
ded language. In DAC Design Automation Conference 2012, pages 1212–1221, 2012.

[4] Scott Beamer and David Donofrio. Efficiently exploiting low activity factors to accelerate
rtl simulation. In Proceedings of the 57th ACM/EDAC/IEEE Design Automation Conference,
DAC ’20. IEEE Press, 2020.

[5] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An infrastructure for adaptive
dynamic optimization. In Proceedings of the International Symposium on Code Generation
and Optimization: Feedback-Directed and Runtime Optimization, CGO ’03, page 265–275,
USA, 2003. IEEE Computer Society.

[6] Tiffany A. Connors, Taylor Groves, Tony Quan, and Scott Hemmert. Simulation framework
for studying optical cable failures in dragonfly topologies. In 2019 IEEE International Par-
allel and Distributed Processing Symposium Workshops (IPDPSW), pages 859–864, 2019.

[7] Karen Devine, Erik Boman, Lee Riesen, Umit Catalyurek, and Cédric Chevalier. Getting
started with zoltan: A short tutorial. In Dagstuhl Seminar Combinatorial Scientific Comput-
ing, 01 2009.

[8] Simon D. Hammond, Arun F. Rodrigues, and Gwendolyn R. Voskuilen. Multi-level memory
policies: What you add is more important than what you take out. In Proceedings of the Sec-
ond International Symposium on Memory Systems, MEMSYS ’16, page 88–93, New York,
NY, USA, 2016. Association for Computing Machinery.

[9] Michael B. Healy and Seokin Hong. Cramsim: Controller and memory simulator. In Pro-
ceedings of the International Symposium on Memory Systems, MEMSYS ’17, page 83–85,
New York, NY, USA, 2017. Association for Computing Machinery.

[10] C. Hughes, S.D. Hammond, R.J. Hoekstra, M. Zhang, M. Khairy, and T. Rogers. Balar: A sst
gpu component for performance modeling and profiling. SAND Report SAND2019-10389,
Sandia National Labs, Albuquerque, New Mexico 87185, Sept 2019.

29

[11] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim, C. Schmidt, C. Markley,
J. Lawson, and J. Bachrach. Reusability is firrtl ground: Hardware construction languages,
compiler frameworks, and transformations. In 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 209–216, Nov 2017.

[12] Fulya Kaplan, Ozan Tuncer, Vitus J. Leung, Scott K. Hemmert, and Ayse K. Coskun. Un-
veiling the interplay between global link arrangements and network management algorithms
on dragonfly networks. In 2017 17th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID), pages 325–334, 2017.

[13] Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt, and Timothy G Rogers. Accel-sim: An
extensible simulation framework for validated gpu modeling. In 47th IEEE/ACM Interna-
tional Symposium on Computer Architecture (ISCA), May 2020.

[14] Samuel Knight, Joseph P. Kenny, and Jeremiah J. Wilke. Supercomputer in a laptop: Dis-
tributed application and runtime development via architecture simulation. In International
Conference on High Performance Computing. Springer, 2018.

[15] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob. Dramsim3: a cycle-accurate, thermal-
capable dram simulator. In IEEE Computer Architecture Letters. IEEE, Feb 2020.

[16] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico Am-
slinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Srikant Bharadwaj, Gabe
Black, Gedare Bloom, Bobby R. Bruce, Daniel Rodrigues Carvalho, Jerónimo Castrillón,
Lizhong Chen, Nicolas Derumigny, Stephan Diestelhorst, Wendy Elsasser, Marjan Fariborz,
Amin Farmahini Farahani, Pouya Fotouhi, Ryan Gambord, Jayneel Gandhi, Dibakar Gope,
Thomas Grass, Bagus Hanindhito, Andreas Hansson, Swapnil Haria, Austin Harris, Timo-
thy Hayes, Adrian Herrera, Matthew Horsnell, Syed Ali Raza Jafri, Radhika Jagtap, Han-
hwi Jang, Reiley Jeyapaul, Timothy M. Jones, Matthias Jung, Subash Kannoth, Hamidreza
Khaleghzadeh, Yuetsu Kodama, Tushar Krishna, Tommaso Marinelli, Christian Menard, An-
drea Mondelli, Tiago Mück, Omar Naji, Krishnendra Nathella, Hoa Nguyen, Nikos Niko-
leris, Lena E. Olson, Marc S. Orr, Binh Pham, Pablo Prieto, Trivikram Reddy, Alec Roelke,
Mahyar Samani, Andreas Sandberg, Javier Setoain, Boris Shingarov, Matthew D. Sinclair,
Tuan Ta, Rahul Thakur, Giacomo Travaglini, Michael Upton, Nilay Vaish, Ilias Vougioukas,
Zhengrong Wang, Norbert Wehn, Christian Weis, David A. Wood, Hongil Yoon, and Éder F.
Zulian. The gem5 simulator: Version 20.0+. CoRR, abs/2007.03152, 2020.

[17] S. Nema, R. Razdan, A. Rodrigues, K. S. Hemmert, G. Voskuilen, D. Adak, S. Hammond,
A. Awad, and C. Hughes. Eras: Enabling the integration of real-world intellectual prop-
erties (ips) in architectural simulators. SAND Report SAND2021-12065, Sandia National
Laboratories, Albuquerque, New Mexico 87185, Sept 2021.

[18] Arun F Rodrigues, K Scott Hemmert, Brian W Barrett, Chad Kersey, Ron Oldfield, Marlo
Weston, Rolf Risen, Jeanine Cook, Paul Rosenfeld, Elliot Cooper-Balis, et al. The structural
simulation toolkit. ACM SIGMETRICS Performance Evaluation Review, 38(4):37–42, 2011.

[19] Jeremiah J. Wilke and et al. Compiler-assisted source-to-source skeletonization of application
models for system simulation. In International Conference on High Performance Computing.
Springer, 2018.

30

[20] Clifford Wolf. Design and implementation of the yosys open synthesis suite. Technical
report, 2013.

31

DISTRIBUTION

Email—External (encrypt for OUO)

Name
Company Email

Address
Company Name

William Harrod william.harrod@iarpa.gov IARPA

Sonia McCarthy sonia.mccarthy@iarpa.gov IARPA (Contractor)

Email—Internal (encrypt for OUO)

Name Org. Sandia Email Address

Simon D. Hammond 01422 sdhammo@sandia.gov

Arun Rodrigues 01422 afrodri@sandia.gov

Scott Hemmert 01422 kshemme@sandia.gov

Clayton Hughes 01422 chughes@sandia.gov

Joseph Kenny 08753 jpkenny@sandia.gov

Gwendolyn Voskeilen 01422 grvosku@sandia.gov

Robert Hoekstra 01420 rjhoeks@sandia.gov

Technical Library 1911 sanddocs@sandia.gov

32

Sandia National Laboratories is a
multimission laboratory managed
and operated by National
Technology & Engineering
Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s National
Nuclear Security Administration
under contract DE-NA0003525.

	Nomenclature
	A-SST
	A-SST Overview
	A-SST and AGILE
	A-SST Architecture
	Core and Elements
	Key Objects
	Parallelism
	Simulation Lifecycle

	Key A-SST Elements
	Memory Hierarchy Components
	Processor Components
	Network Components
	Network Endpoints
	Network Models

	Low-Level Models

	Usage Scenarios
	General Usage Scenarios
	Multi-Fidelity Simulation
	Runtime Modeling

	Additional Information
	References

