
Analyzing and Securing Software

via Robust and Generalizable Learning

Kexin Pei
Department of Computer Science

1

“Software is Eating the World”
- Marc Andreessen

2

Software is Plagued with Errors

“Bad software cost US businesses $2.41 trillion in 2022” - SC Media
“280 days average time companies need to detect and respond to cyber attacks…” - Skybox
“Cybercrime is predicted to cost the world $7 trillion in 2022” - CISQ Report

3

Software Programs

Program Analysis is Crucial for Building Trustworthy Software

Trustworthy Software

Security

Reliability

Safety

Privacy

Performance

Questions Help to Build

Program Analysis Answers

Vulnerability Privacy Leak
Can pointer p be
NULL at line L?

4

Significant Manual Effort

Various Security Applications

Tune

Heterogeneous Software

Challenges of Traditional Program Analysis

Human Expert Rules and Heuristics

Hand-Curate

Design analysis rules?Represent a program?

How to

5

Abundant Public Code Abundant Compute

Program Representations

Analysis Rules

Learn

Machine Learning Shows Promise for Analyzing Programs

Human Expert Rules and Heuristics

Hand-Curate

Design analysis rules?Represent a program?

How to

6

Machine Learning Shows Promise for Analyzing Programs

Detecting and Exploiting Vulnerabilities

7

A code summarization example (Alon et al., 2019, Yefet et al., 2020, Henkel et al. 2022)
code2vec.org / code2seq.org

Limitations: Lack Understanding of Program Semantics

8
Yefet, Noam, Uri Alon, and Eran Yahav. "Adversarial examples for models of code." OOPSLA 2020.

Static Text

Program Text Sequence Trees (AST) Graphs (CFG/DFG) ML Model

Common Practice:

Specific Task

Common Practice of ML on Code

Program semantics does not just manifest in static text

Consequences: Lacking Robustness and Generalization

I. Overfit to spurious textual and task-specific patterns

II. Distribution shift: program syntax and task requirement changes

Security Applications Require More Rigorous Understanding of Program Semantics

9

Learn How
Program Behaves

Learning Execution Semantics and
Transferring it without Dynamic Analysis

Execution
Semantics

ML Model

Program Behavior

Programs in-the-wild

Binary AnalysisML Model

Pretrain Finetune

Execute
Observe

Past Experience on Programming

Novice AnalystsCoding

mov eax,0
add eax,0x16

xor eax,eax
sub eax,-0x16

Experienced Analysts

Grow

Setting a register to 0
Increment it by 22

Setting a register to 0
Increment it by 22

“Mental Execution”

10

Case Studies: Vulnerability Search in Firmware

Pei, Xuan, Yang, Jana, Ray. Trex: Learning Execution Semantics from Micro-traces for Binary Similarity. TSE’22

Ubiquiti sunMax TP-Link Deco-M4 NETGEAR R7000 Linksys RE7000

Firmware Images: Arm, MIPS with unknown compiler flags

Search

16 Vulnerabilities (Compiled in x86) 15 CVEs 16 CVEs 7 CVEs 14 CVEs

Search over 1.4M functions within
6.3 secondsApproximate Nearest NeighborsLearned Function Embeddings

11

Precise: Outperforms the state-of-the-art by up to 118%

Summary: Learning Program Semantics via Execution-Aware Pre-training
Improves Program Analysis

-O0 -O1 -O2
-O3 -Od Ox

Generalizable and Robust: Remains accurate across

Compilers Architectures Optimizations Obfuscations

Efficient: Speedup over the off-the-shelf tool by up to 98.1x

Learn How
Program Behaves

Execution
Semantics

ML Model

Program Behavior

Programs in-the-wild

Program AnalysisML Model

Pretrain Finetune

12

Broad Application
● Detecting Semantically Similar Binary Code [1]
● Type Inference and Data Structure Recovery [2]
● Binary Memory Dependence Analysis [3]
● Inferring Program Invariance for Source Code [4]
● Source Code Vulnerability Detection [5]

[1] Pei et al. Trex: Learning Execution Semantics from Micro-traces for Binary Similarity. TSE’22
[2] Pei et al. StateFormer: Fine-grained type recovery from binaries using generative state modeling. ESEC/FSE’21
[3] Pei et al. NeuDep: neural binary memory dependence analysis. ESEC/FSE’22
[4] Pei et al. Can Large Language Models Reason about Program Invariants. ICML’23
[5] Ding et al. TRACED: Execution-aware Pre-training for Source Code. ICSE’24.

