Analyzing and Securing Software

via Robust and Generalizable Learning

Kexin Pei
Department of Computer Science

B8] THE UNIVERSITY OF

CHICAGO

CoLumMBIA UNIVERSITY
IN THE CITY OF NEW YORK

“Software is Eating the World”

- Marc Andreessen

Software is Plagued with Errors

“Bad software cost US businesses $2.41 trillion in 2022” - SC Media

“280 days average time companies need to detect and respond to cyber attacks...” - Skybox
“Cybercrime is predicted to cost the world $7 trillion in 2022” - CISQ Report

Hackers breach energy orgs via bugs in discontinued web server

By Sergiu Gatlan

November 22, 2022 02:55PM 0

Florida Hack Exposes Danger to Water Systems

STATELINE ARTICLE March 10, 2021 By: Jenni Bergal Read time: 7 min

CYBERSECURITY

Cyberattack on food supply followed years of warnings

Virtually no mandatory cybersecurity rules govern the millions of food and agriculture businesses that account for about a fifth of the U.S.
economy. And now, the risk has become real.

Program Analysis is Crucial for Building Trustworthy Software

Software Programs

Questions

Program Analysis

Can pointer p be
NULL at line L?

®

Vulnerability

=

.& Help to Build
ST |

Answers
1

e e e

Trustworthy Software
Security

Reliability

Safety

Privacy

Performance

Challenges of Traditional Program Analysis

Hand-Curate

How to »© O

Human Expert Rules and Heuristics

Represent a program?

Significant Manual Effort

Input: kill(B) and gen(B) for every basic bloc B.
Output: in(B) and out(B) for every basic bloc B.

for each B repeat
out(B) := gen(B)
while changes to any out(B) occur repeat
in(B) =U p . pred(s) out(B')
out(B) := gen(B) J (in(B) \ kill(B))

Design analysis rules?

Machine Learning Shows Promise for Analyzing Programs

Program Representations

Analysis Rules

Abundant Public Code Abundant Compute

Machine Learning Shows Promise for Analyzing Programs

Detecting and Exploiting Vulnerabilities

. Brandon Rossi
devtooligan & ﬁ @0xConda
@devtooligan

)) | told ChatGPT to pentest a scope of IPs and it found
omg. seriously mind-blown & me $69,420 worth of bugs.

Are there any vulnerabilities in this Solidity contract? | want to make sure no one can steal
other peoples’ deposits. If there are, how do | fix it?

contract Vault {
mapping(address => uint256) public balances;

function deposit() public payable {
balances[msg.sender] += msg.value;

}

function withdraw(uint256 amount, address from) public {
balances[from] -= amount;
payable(from).transfer(amount);
}
}

This contract appears to have a potential vulnerability in the “withdraw® function. The

*withdraw" function allows anyone to specify the *from™ address when calling the

function, which means that a malicious user could potentially withdraw funds from an

arbitrary address by calling *withdraw™ and specifying a different * from™ address.

To fix this issue, you could modify the *withdraw™ function to only allow the caller to
withdraw funds from their own account. You could do this by replacing the " from®
parameter with *msg.sender ", which will always represent the caller's address. Here is an

example of how you could do this:

Limitations: Lack Understanding of Program Semantics

A code summarization example (Alon et al., 2019, Yefet et al., 2020, Henkel et al. 2022)

code?vec.org / code2seq.org

void £f1(int[] array) {
boolean swapped = true;
for (int 4. = 0y

swapped = false;
for (int j = 0;
j < array.length-1-i; Jj++) {

if (array[j] > array[j+1]) {
int temp = arrayl[jl;
array[j] = array[j+1];

array[j+1]= temp;
swapped = true;

i < array.length && swapped; i++) {

Prediction: sort (98.54%)

v,

void £2(int[] ttypes) {
boolean swapped = true;
for (int i = 0;

i < ttypes.length && swapped; i++) {

swapped = false;

for (int 3 = 0;

j < ttypes.length-1-i; Jj++) {

if (ttypes[j] > ttypes[j+1]) {

int temp = ttypes[j];
ttypes[j] = ttypes[j+1];
ttypes[j+1l]= temp;
swapped = true;

X)

Prediction: contains (99.97%)

Yefet, Noam, Uri Alon, and Eran Yahav. "Adversarial examples for models of code." OOPSLA 2020.

Common Practice of ML on Code

Common Practice: Static Text

& 020, E—
s O’/.\o (o) - . . Y/
[T d

Program T T AT T T T ML Model Specific Task

Program semantics does not just manifest in static text

|

Consequences: Lacking Robustness and Generalization

I. Overfit to spurious textual and task-specific patterns

Il. Distribution shift: program syntax and task requirement changes

|

Security Applications Require More Rigorous Understanding of Program Semantics

Learning Execution Semantics and
Transferring it without Dynamic Analysis

__ Setting a register to 0
Increment it by 22

mov eax, 0

i </y= add eax, 0x16

! ——+ Execute R “Mental Execution”
Fﬁ] Observe

1 XOor eax,eax

i sub eax,-0x16 _ _

!) . Setting a register to 0
i Coding Experienced Analysts Increment it by 22
e i Pretrain

' Programs in-the-wild Lo

! . L Learn How < Execution

. IR Sehavior —H Do Program Behaves {_ Semantics

1 [| : :

1 [| | |

""""""""""""""""""" ' ! ML Model

10

Case Studies: Vulnerability Search in Firmware

CVE Library Description
CVE-2019-1563 OpenSSL | Decrypt encrypted message
CVE-2017-16544 BusyBox Allow executing arbitrary code Firmware Images: Arm. MI PS With unknown Compiler ﬂags
CVE-2016-6303 OpenSSL Integer overflow >
CVE-2016-6302 | OpenSSL | Allows denial-of-service
CVE-2016-2842 OpenSSL | Allows denial-of-service Py
CVE-2016-2182 | OpenSSL | Allows denial-of-service s <
CVE-2016-2180 | OpenSSL | Out-of-bounds read Search -
CVE-2016-2178 OpenSSL | Leak DSA private key —
CVE-2016-2176 | OpenSSL | Buffer over-read ot ; I
CVE-2016-2109 OpenSSL Allows denial-of-service ; 4 3
CVE-2016-2106 OpenSSL Integer overflow " e
CVE-2016-2105 | OpenSSL | Integer overflow ~—
CVE-2016-0799 | OpenSSL | Out-of-bounds read . . .
CVE-2016-0798 | OpenSSL | Allows denial-of-service Ubiquiti sunMax TP-Link Deco-M4 NETGEAR R7000 Linksys RE7000
CVE-2016-0797 OpenSSL NULL pointer dereference
CVE-2016-0705 | OpenSSL | Memory corruption l l l l
16 Vulnerabilities (Compiled in x86) 15 CVEs 16 CVEs 7 CVEs 14 CVEs

e

Learned Function Embeddings Approximate Nearest Neighbors Search over 1.4M functions within

6.3 seconds

11
Pei, Xuan, Yang, Jana, Ray. Trex: Learning Execution Semantics from Micro-traces for Binary Similarity. TSE’22

Summary: Learning Program Semantics via Execution-Aware Pre-training
Improves Program Analysis

Programs in-the-wild

i | Program Behavior

Learn How

Precise: Outperforms the state-of-the-art by up to 118%

Efficient: Speedup over the off-the-shelf tool by up to 98.1x

Generalizable and Robust: Remains accurate across

e

G OO (64|86
Visual C++

Compilers Architectures

1] Pei et al. Trex: Learning Execution Semantics from Micro-traces for Binary Similarity. TSE’22

-00 -01 -02
-03 -0d Ox

Optimizations Obfuscations

Program Behaves

Execution
Semantics

ML Model Program Analysis

Broad Application

Detecting Semantically Similar Binary Code [1]
Type Inference and Data Structure Recovery [2]
Binary Memory Dependence Analysis [3]
Inferring Program Invariance for Source Code [4]
Source Code Vulnerability Detection [5]

2] Pei et al. StateFormer: Fine-grained type recovery from binaries using generative state modeling. ESEC/FSE’21

4] Pei et al. Can Large Language Models Reason about Program Invariants. ICML’23

[
[
[3] Pei et al. NeuDep: neural binary memory dependence analysis. ESEC/FSE’22
[
[

5] Ding et al. TRACED: Execution-aware Pre-training for Source Code. ICSE’24.

12

