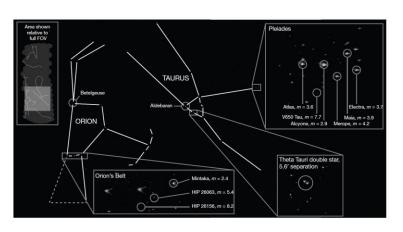


Full Sky Petapixel Optical Imaging

David Brady djbrady@Arizona.edu

Multiscale Optics for Wide Field Sub-microradian ifov

Through the DARPA AWARE program we developed multiscale optics for compact >10 gigapixel cameras

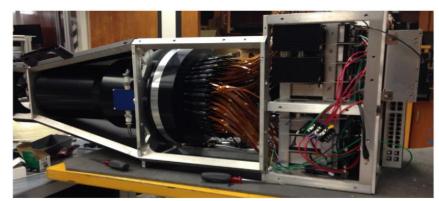

LETTER

doi:10.1038/nature11150

Primary mirror

Multiscale gigapixel photography

D. J. Brady¹, M. E. Gehm², R. A. Stack³, D. L. Marks¹, D. S. Kittle¹, D. R. Golish², E. M. Vera² & S. D. Feller¹



WIDE-FIELD ASTRONOMICAL MULTISCALE CAMERAS

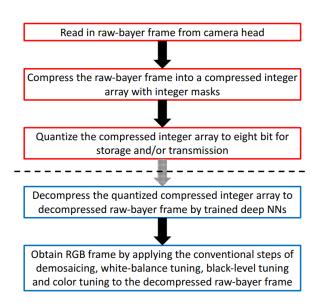
Daniel L. Marks¹ and David J. Brady¹
Published 2013 March 28 • © 2013. The American Astronomical Society. All rights reserved.

The Astronomical Journal. Volume 145. Number 5

Image Microcamera Schmidt surface array Corrector (if present)

AWARE 40 camera

Compressive Sampling for Array Camera Power Management



SIAM J. IMAGING SCIENCES Vol. 14, No. 1, pp. 156-177 © 2021 Society for Industrial and Applied Mathematics

Compressive Sampling for Array Cameras*

Xuefei Yan[†], David J. Brady[‡], Weiping Zhang[†], Changzhi Yu[†], Yulin Jiang[†], Jiangiang Wang[§], Chao Huang[§], Zian Li[†], and Zhan Ma[§]

Physical and electronic compressive sampling enables >100x power per resolved pixel reduction, making full sky imaging at nanoradian scale ifov feasible.

Scatter Ptychography

SCATTER PTYCHOGRAPHY

A PREPRINT

Qian Huang* Wyant College of Optical Sciences University of Arizona

Tucson, AZ 85721 qh38@email.arizona.edu

9 Yuzuru Takashima

Wyant College of Optical Sciences
University of Arizona
Tucson, AZ 85721
ytakashima@optics.arizona.edu

Zhipeng Dong

Wyant College of Optical Sciences University of Arizona Tucson, AZ 85721 zhipengdong@email.arizona.edu

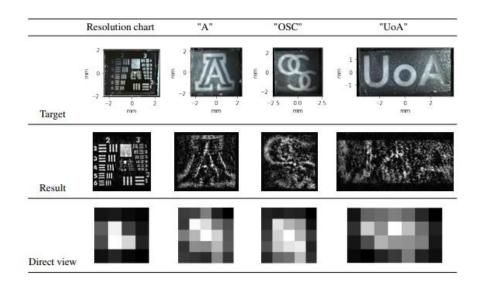
Timothy J. Schulz

Department of Electrical and Computer Engineering Michigan Technological University Houghton, MI 49931 schulz@mtu.edu

O David J. Brady

Wyant College of Optical Sciences University of Arizona Tucson, AZ 85721 djbrady@arizona.edu

March 24, 2022


ABSTRACT

Coherent illumination reflected by a remote target may be secondarily scattered by intermediate objects or materials. Here we show that phase retrieval on remotely observed images of such scattered fields enables imaging of the illuminated object at resolution proportional to $\lambda R_s/A_s$, where R_s is the range between the scatterer and the target and A_s is the diameter of the observed scatter. This resolution may exceed the resolution of directly viewing the target by the factor R_sA_s/R_sA_s , where R_s is the range between the observer and the target and A_s is the observing aperture. Here we use this technique to demonstrate $\approx 32\times$ resolution improvement relative to direct imaging 2 .

1 Background

Phase retrieval consists of estimation of complex-valued fields from irradiance measurements[2, 3, 4]. Typically

Analysis of specular reflection enables tracking of space objects with resolution beyond the optical diffraction limit.

