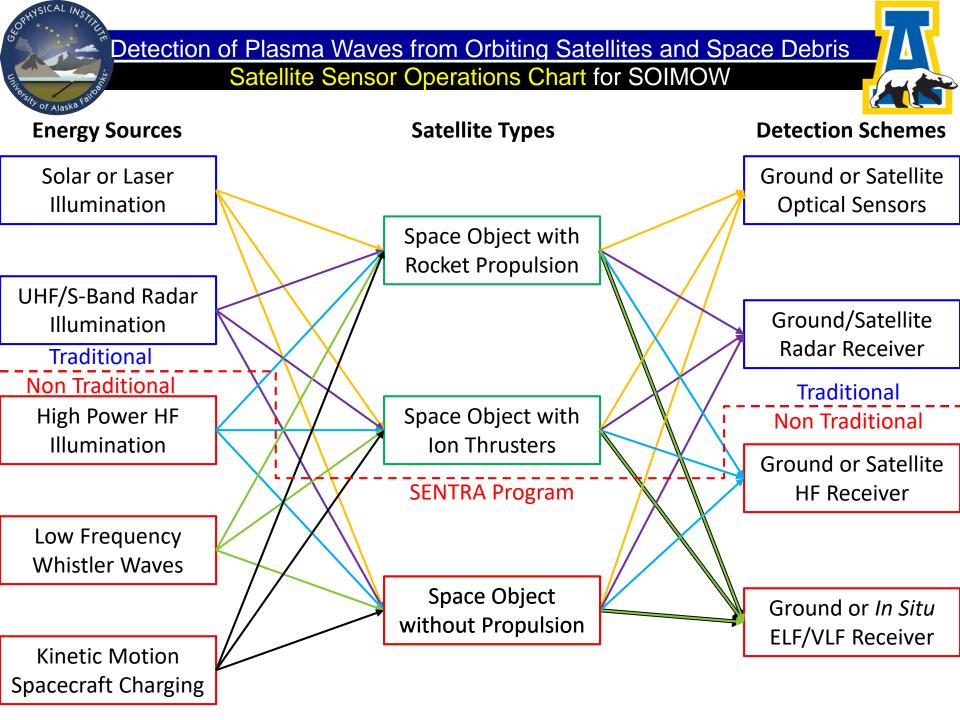


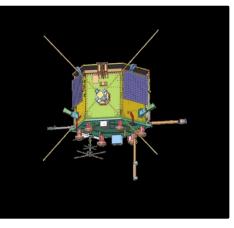
Space Object Identification by *In Situ* Measurements of Orbit Driven Waves SOIMOW Capability Briefing



Paul Bernhardt, Geophysical Institute University of Alaska, Fairbanks, AK
Lauchie Scott, DRDC Ottawa Research Centre, Ottawa, ON, CA
Andrew Howarth, University of Calgary, Calgary, AB, CA
Mark Koepke, West Virginia University, Morgantown, WV
Joseph D. Huba, Syntek Technologies, Fairfax, VA

- SOIMOW Technology Overview
 - Program Objectives: Detection, Classification, Recognition, and Identification (DCRI) of Space Objects for Space Situational Awareness (SSA)
 - Track Space Debris Less Than 10 cm in Size
 - Develop Satellite Damage Mitigation by Collision Avoidance
 - Identify Unexpected Plasma Wave Emission Events in Space
 - Determine Effects of satellite shape, orbit, tumbling, and thrusters
 - Tools for Detection of Satellites and Space Debris by Plasma Waves
 - Arecibo UHF Incoherent Scatter Radar Data of Satellite Plasma Waves
 - SWARM-E Satellite with Electric and Magnetic Field Sensors in Low Earth Orbit
 - Illumination by **HAARP** High Power HF Transmitter for Excitation of EM Plasma Waves
 - Experimentally Validated Theories on Stimulated Scatter of Plasma Waves
 - Mission Planning Tools for Space Object Tests and Technique Evaluation
 - Examples of SOIMOW Successes for Space Object Detection
 - Close Conjunctions of Inert Space Debris and Satellites with Electric Field Sensors
 - Detection of High Power HF Excited Emissions for Electrostatic Waves in Space
 - Spacecraft Detection by Passage Through VLF Transmitter Ray Paths
 - Transient Excitation of Magnetosonic Solitons and Whistlers by On Orbit Events
 - Plasma Wave Turbulence in Long-Distance Neutral Clouds from Satellites
 - Conclusions

University of Alaska Fairbanks and University of Calgary Facilities for Space Debris Identification and Tracking with SOIMOW

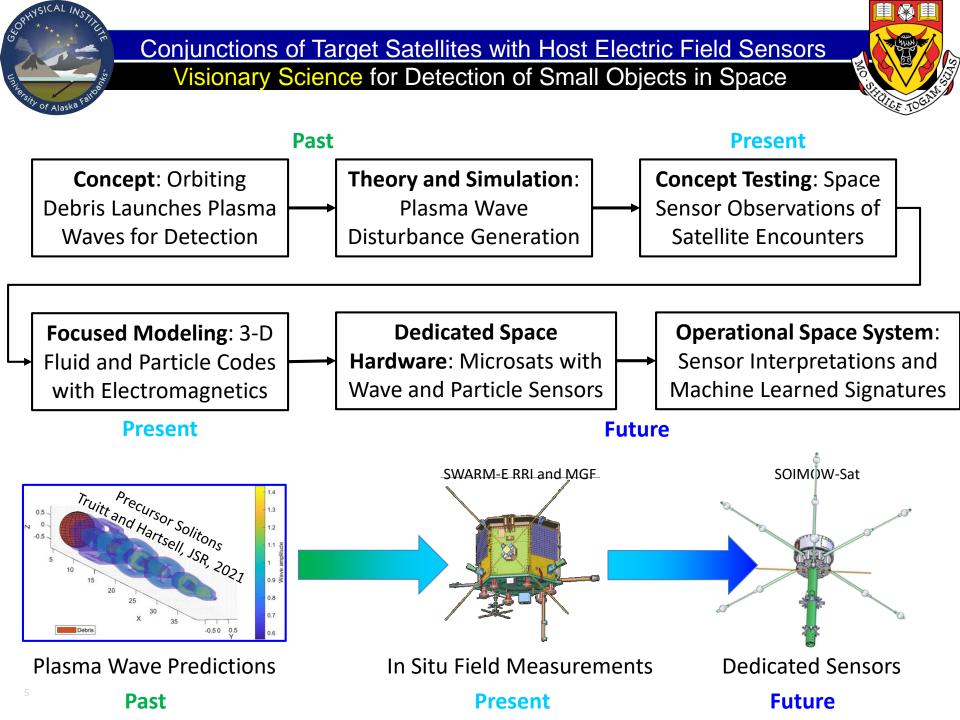


HAARP High Power HF Illuminator

Active Environmental Research Array

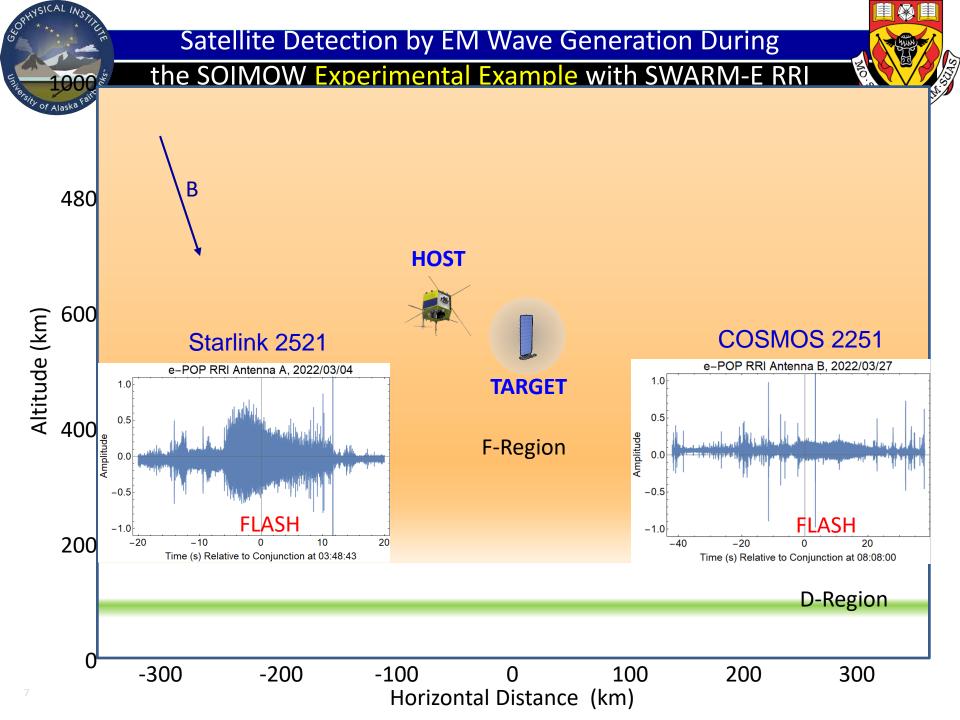
SWARM-E Plasma Inst.

PFISR UHF Space Weather Radar



UAF Cameras and LIDARs

Poker Flat Rocket Range


Key Features of Low and Medium Frequency Plasma Waves

for Space Debris Identification and Tracking (SINTRA)

Mode	Alias	Frequency Range	Speed	Group Direction	Polarization
Fast	Compressional	Low Frequency	Fast	Isotropic	$\mathbf{E} \cdot \mathbf{B_0} = 0$
Magnetosonic	Alfven Wave	$0 < \omega < \Omega_{\rm i} \text{ or } \omega_{\rm LH}$			
Alfven	Shear	Low Frequency	Fast	Along B₀	$\mathbf{E} \cdot \mathbf{B_0} = 0$
	Alfven Wave	$0 < \omega < \Omega_{\rm i}$			
Slow	Magnetized Ion	Low Frequency	Slow	Along B₀	E B ₀
Magnetosonic	Acoustic Wave	$0 < \omega < \Omega_{\rm i} \cos \theta$			
Whistler	Electron Whistler,	Medium Frequency	Fast	19.5° of B₀	$\mathbf{E} \cdot \mathbf{B_0} = 0$
	Helicon Wave	$\Omega_{\rm i} < \omega < \Omega_{\rm e} \cos \theta$			
Electrostatic	First Ion	Low Frequency	Zero	Isotropic	$\mathbf{E} \cdot \mathbf{B_0} = 0$
Ion Cyclotron	Cyclotron	$\omega^2 = \Omega_i^2$			
Ion Cyclotron	Second Ion	Low Frequency	Zero	Along B₀	E B ₀
	Cyclotron	$\omega^2 = \Omega_i^2 \text{cos}^2 \theta$			
Ion Acoustic	Unmagnetized	Medium Frequency	Slow	Isotropic	E B ₀
	Ion Sound Waves	$\Omega_{\rm i} < \omega < \Omega_{\rm e} \cos \theta$			
Lower Hybrid	Finite-k _z	Low Frequency Fixed	Slow	Perpendicular to	$\mathbf{E} \cdot \mathbf{B_0} = 0$
	Lower Hybrid	$\omega_{LH}^{2} = \frac{\Omega_{i}\Omega_{e} + \Omega_{e}^{2}\cot^{2}\theta}{1 + \Omega^{2}/\omega^{2}}$		Phase Velocity	
	Waves	$\omega_{LH} = \frac{1 + \Omega_e^2}{1 + \Omega_e^2} / \omega_{pe}^2$			

of Alask

Detection of Plasma Waves from Orbiting Satellites and Space Debris End-to-End Resources at the Geophysical Institute/UAF and U/Calgary

Program Asset	Name	Source	Purpose	Data Product		
Alaska Satellite-Tracking Ground Station	ASF	UAF	Realtime Tracking	Synthetic Aperture Radar Satellite Tracking		
Satellite Orbits and Target Conjunction Predictions	SOAP	Aerospace	Mission Planning	Satellite and Space Debris Trajectories		
Magnetic Field Vectors and Satellite Velocity Geometries	IGRF+	UAF	Mission Planning	Favorable Geometries for SINTRA Tests		
SWARM-E Satellite with Plasma Wave Receivers	e-POP RRI/MGF	Univ. of Calgary	Space Data Acquisition	Electric and Magnetic Fields from SWARM-E		
High Power HF Transmitter: Electrostatic Wave Generator	HAARP	UAF	Target Illumination	Stimulated Scatter from Space Targets		
Ground HF, VLF, and ELF Receivers	AERA	UAF and DOD	Emission Detection	Plasma Wave Fields from Spacecraft		
Multimode Plasma Wave Propagation and Generation	WIPL-D+	WIPL-D and UAF	Observation Analysis	Identification of Host Wave		
Space Plasma Laboratory	SPLE	WVU	Experiment	Scaled Plasma Physics		
Ionospheric Specification Simulation and Tools	SAMI-3	JD Huba	Background Ionosphere	Ambient Plasma Wave Environment		

Plasma Waves from Orbiting Satellites and Space Debris Summary of SOIMOW Team Capabilities

- Satellite Motion Produces Waves and Wakes
 - Orbital Plasma Waves Provide a New Means of Space Object Detection
 - Ionospheric Waves from Spacecraft Impact the Space Weather Environment
- Factors Affecting Plasma Wave Disturbances from Space Objects
 - Trajectory Relative to Magnetic Field Direction
 - Size, Orientation, and Tumbling of Spacecraft or Debris
 - Propulsion System Operation Injecting Neutral or Ion Beams
- Space Object Detection Systems
 - Close Encounters between Hypersonic Target and Sensors on Host Satellite
 - Target Flight Through High Power HF Beams Near Ionospheric Critical Regions
 - Passage of Target Between Ground VLF Transmitter and Whistler Receivers
- Current SOIMOW Activities
 - Continuing Conjunctions of HOST SWARM-E Sensors with Targets of Opportunity
 - Scheduled Flights of High-Inclination, Low-Altitude Targets Though the HAARP Beam
 - Target Flights Over Ground VLF Transmitters with Satellite and Ground Sensor Support
 - Mission Planning to Execute On-Going Experiments
 - Theory, Simulation and Laboratory Experiments to Explain Observations
 - Identification of Benefits and Hazards for Multiple Spacecraft and Debris in LEO