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Capabilities: Overview

Goal: Detect small (sub 10cm) debris via 
plasma signature
• Simulate (1D-3D) precursor and pinned

electrostatic solitons produced by orbital 
debris 
– including damping effects and dissipation due 

to variation in the plasma environment
• Autonomously identify solitons in noisy

data using inverse scattering transform
• Experimental facilities:
– 2 dusty microTorr vacuum chambers, emissive 

filament, 4K fps high speed camera (in vacuum 
chamber)

• Astrodynamics
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Figure Source: Nature, Vol 376, 1995.



Soliton Simulation Capabilities

• A. Truitt and C. Hartzell, “Simulating Plasma 
Solitons from Orbital Debris using the Forced 
Korteweg-de Vries Equation”, Journal of Spacecraft 
and Rockets. 2020. Vol 57 (5), 876-897. 
https://doi.org/10.2514/1.A34652

• A. Truitt and C. Hartzell, “Simulating Damped Ion 
Acoustic Solitary Waves from Orbital Debris”,
Journal of Spacecraft and Rockets. 2020. Vol 57 (5) 
975-984. https://doi.org/10.2514/1.A34674

• A. Truitt and C. Hartzell, “3D Kadomtsev-
Petviashvili Damped Forced Ion Acoustic Solitary 
Waves from Orbital Debris”, J. of Spacecraft and 
Rockets, 2021, Vol. 58, No. 3, pp. 848-855 
https://doi.org/10.2514/1.A34805.
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Table 1 and a circular orbit velocity of7.51 km∕s, pinned solitonswere
observed for the full range of debris sizes (0.1–10 cm) examined. For 1-
mm- and 1-cm-radius debris, the pinned soliton amplitudewas approx-
imately 1.04 and 1.14 times the unperturbed background density,
respectively. Because pinned solitons travel with the debris, they are
not useful for on-orbit detection efforts because they would not be
sensed before collision.However, pinned solitons can be detected from
ground sensors using the same techniques used to measure plasma
density irregularities. Small-scale plasma irregularities are frequently
studied with existing sensor technology, including ground-based radar
[46], ionosondes [47], and space-based sensors [48,49]. The amplitude
of the density waves that can be detected is less than 0.1% of the
unperturbed density [49]. Therefore, the amplitude of the pinned
solitons is within the range of detectability of current sensors.

B. High LEO Region 1

As the altitude increases, the plasma density decreases. In this
topside ionosphere environment, the dominant ion species is H!,
which is much lighter than O!. The ion acoustic velocity is compa-
rable to the debris orbital velocity, and the Debye length is compa-
rable to the debris size. As opposed to pinned solitons that travel with
the debris, precursor solitons are produced, which advance ahead of
the debris, as shown in Figs. 4 and 5. Because the precursor solitons
will advance ahead of the debris, they will allow for the potential to
detect the debris without collision.
In our normalized system, the soliton amplitude displayed in

Figs. 3–7 is the perturbed ion density normalized by the unperturbed
ion density U " #n − n0$∕n0. For example, Fig. 7 has a soliton
amplitude of two, corresponding to three times the unperturbed ion

density in high LEO 2. In high LEO 2, the unperturbed ion density is
104 cm−3, and so the perturbed ion density will be 3 × 104 cm−3.
Figures 4 and 5 show the solitons generated by 2.5- and 0.5-cm-

radius debris using the κ-distribution coefficients in Eq. (16),
α " 1.0051, β " 0.4925, and γ " 0; whereas Fig. 5 shows a com-
parison to the Maxwellian distribution coefficients α " 1, β " 0.5,
and γ " 0. Using the κ-distribution results in more wave steepening
and less wave dissipation, allowing for more precursor solitons to be
produced in the 1400-TU simulation time shown. A discussion of
how the soliton characteristics change as a result of the debris
characteristics is given in Sec. VII.

C. High LEO Region 2
In this region, the lower limit to the topside ionosphere plasma

density is used. Precursor solitons are produced, advancing ahead of
the debris, as shown in Fig. 7. Although the ion acoustic velocity is
still comparable to the debris orbital velocity, the Debye length is
increasingly larger than the debris size.When compared to high LEO
region 1, smaller debris do not produce precursor solitons in this
region, and the limits for debris size and velocity that produce
precursor solitons are discussed in Sec. VI.

D. Polar LEO

In polar LEO 1, the plasma is high energy and low density. As a
result, the ion acoustic velocity exceeds the debris orbital velocity,
and the Debye length is much larger than the debris size. The forcing
function in Eq. (25) approaches aDirac functionmoving downstream
with respect to the plasma. It is possible to generate ion acoustic

Fig. 4 Precursor solitons created by 2.5-mm-radius charged debris in
high LEO region 1 of Table 1, in an elliptical orbit with V ! 1.2Via,
Φp;n ! −0.93, and κ coefficients.

Fig. 5 Precursor solitons created by 0.5-cm-radius charged debris in
high LEO region 1 of Table 1. Debris has a circular orbit velocity, with
Φp;n ! −0.94, and κ coefficients.
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Soliton Simulation Capabilities
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• Modeled using forced KdV equations (1D), KP 
equations (2D,3D)

• Focused primarily on wave in plasma density, 
but from density, can derive electric field

• Questions we have answered:
– what size debris produce precursors? at what 

altitude, latitude, longitude?
– what are the characteristics of the precursors: 

amplitude, width, generation frequency, time to 
first generation, distance traveled prior to 
dissipation?

– could be extended for pinned solitons
Example 3D precursor soliton

Source: Truitt and Hartzell, 2021, JSR

in Fig. 8. The precursor solitons created at the center of the debris
remain the highest-amplitude and highest-frequency solitons. The
transverse solitons along thewidth of the debris create soliton rings in
the Y–Z plane that advance ahead of the debris along the debris
velocity vector in the X domain.

VII. Discussion
Section VI shows the 3-D structure of damped precursor solitons

predicted to be generated by subcentimeter orbital debris in the

hydrogen-dominated high low Earth orbit (LEO) region. In Fig. 6,
we see that the amplitude of the 2-Dwave along the velocity direction
agreeswellwith the 1-Dpredictions presented in [18,19], as expected.
When extended to 3-D, the precursor solitons produce ring solitons,
as shown in Figs. 7 and 8. Three-dimensional soliton rings have been
observed in other fluid media, to include Fermi gas [42], laser media
[43], shallow water vortex rings created by dolphins [44], and Bose–
Einstein condensates and nonlinear optics [45].
Understanding the 3-D structure of precursor solitons is critical

to future efforts to design methods and technologies to detect these
signatures of orbital debris. For example, a Langmuir probe would
need to pass through the precursor ring to detect the soliton. Addi-
tionally, we have included the damping of the precursor solitons,
which is another key characteristic that influences detectability. Our
priorwork [18,19] shows that the amplitude of pinned solitons is 1.04–
1.14 times the unperturbed background density, and the amplitude of
precursor solitons is two to three times the unperturbed background
density for 1-mm to 1-cm-radius debris. The amplitudes of these
solitons are above the threshold of small-scale plasma irregularities
that are frequently studied with existing sensor technology, including
ground-based radar, ionosondes, and space-based sensors [46–48].
The amplitude of the density waves that can be detected is as small as
0.001%of the unperturbeddensity [49]. Futurework should assess the
operational challenges associated with detecting 3-D ring solitons.
Further research is necessary to assess the feasibility of estimating

the size and speed of the originating debris from the characteristics
of the soliton produced. To identify a soliton,more than one detection
is required to verify that the soliton maintains its shape and speed
during propagation [17], differentiating it from other plasma pertur-
bations. Once detected, the soliton would need to be fit to existing
models of soliton width, amplitude, velocity, and damping rate to
identify a range of valid debris sizes and speeds, which potentially
created the soliton. Future work should consider new detector tech-
nologies and operational techniques required to detect solitons pro-
duced by debris and conclusively distinguish them from other plasma
anomalies.
As a proof of concept, existing ion density data can be queried to

identify pinnedor precursor solitons fromknown tracked spacedebris.
Detection of solitons produced by known space debris in existing data
sets would validate themodeling of plasma solitons in the ionosphere.
Once soliton detection techniques are designed, solitonswill allow for
mapping of subcentimeter orbital debris in LEO, providing a capabil-
ity to characterize the orbital debris population with existing sensor
technology, in a region where orbital debris estimations are not fully
understood.

VIII. Conclusions
In [18,19], the orbital altitudes and latitudes where solitons can be

created from orbital debris were identified, which have amplitudes
above the threshold of detectability from current ground-based and
space-based sensors. The soliton altitude, latitude, width, frequency,
and propagation distance were modeled as a function of debris size
and speed. Now, the authors conclude that precursor solitons will be
accompanied by 3-D ring solitons, which will propagate along the
debris velocity vector at radii defined by the debris width and at
predictable intervals. These transverse solitons will allow for addi-
tional opportunity to measure previously undetectable orbital debris
in a region where the characteristics of the subcentimeter debris
population are largely uncertain.
The predictions for 1-D propagation of both pinned and precursor

solitons are in agreement with the 2-D and 3-D projections. The 1-D
KdV numerical simulation, combined with the 2-D and 3-D KP trans-
verse soliton spacing trends, provides the necessary characteristics to
evaluate the feasibility of soliton detection with existing sensors or
design new detectors. Additionally, it may be possible to calculate the
size and speed of the originating debris from the characteristics of the
soliton produced. To identify a soliton, more than one detection is
required to verify that the soliton maintains its shape and speed during
propagation. With additional transverse solitons, the determination of
the originating debris can be further refined with fewer detections.

Fig. 7 Three-dimensional simulation results for precursor solitons
for two different debris sizes and speeds: a) G ! 0.5, Vrel ! 0.425, at
t ! 67.64 TU; b) G ! 0.75, Vrel ! 0.1375, at t ! 79.8 TU.

Fig. 8 Three-dimensional simulation results in the equal axis scale for
precursor solitons G ! 0.75, Vrel ! 0.1375, at t ! 79.8 TU.
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On-Going Work: Signal Inversion

• Agnostic to sensor, given a measurement of the plasma density, 
how can we detect the presence of a soliton?
– inverse scattering transform works with forced, noisy signal
– Publication soon to be submitted to Physics of Plasmas

• Given a detected soliton, what can we infer about the debris?
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FIG. 1: Intermediate calculations in the IST process.
The circles are the numerically found zeros of M11,

µi = M12, and Ej = trM± 1. The solid blue lines are
the respective functions evaluated on the E grid. The y
axis are on a symmetric log scale43. Not shown are the

values of the zeros at E ⇡ 0.5. For
E = �0.49512143584452, M11 = �96319877073866.8,

M12 = �45940220664691.2,
(trM/2 + 1) = 67791029796864, and
(trM/2� 1) = 67791029796864.

ping the solution. The time evolution equation is given
by Equation 24 where k are the wavenumbers of the
Fourier modes, s = ⇡/L, �t is the timestep, L is the
length of the spatial domain, and F represents a discrete
Fourier transform. The timestep �t is chosen to ensure
a numerical stability condition.

Un+1 = F
�1

h 1

1��t�is3k3
�
(1��t�is3k3)F(Un�1)

��t↵iskF(Un)2 +�tiskF(S)
�i

(24)
This been demonstrated to be accurate to Unumerical �

Uanalytical ⇡ 10�4 on known solutions to the fKdV
equation12,13.
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(a) Single soliton translating.

0 0.1 0.2 0.3 0.4

k

0

2

4

t

0.01

0.02

0.03

0.04

0.05

(b) Fast Fourier transform in space of soliton signal.
No clearly identifiable mode.
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(c) PIST transform of soliton signal at t = 0, 2.48,
and 5. Modulus of each mode is on the right y axis
and marked with the di↵erently oriented triangles.

The amplitudes use the circular markers.

FIG. 2: Spectrum of u(x) = sech2
⇣p
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Lab Facilities

• Two ‘dusty’ vacuum chambers 
capable of microTorr levels
– 22.75” diameter, 11” deep collar-

type vacuum than can be mated 
to 18”x22” bell jar

– 24”x24”x30” chamber
• 4K fps high speed camera that

can be used in the larger vacuum
chamber (PCO Dimax CS3)

• emissive filament plasma source
• 44 core lab server
• access to UMD’s supercomputers
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