
 

 

AGILE Program Workflows 

Purpose 

The purpose of this document is to describe the four AGILE Program workflows, plus their 

derived kernels, and three industry standard benchmarks that will drive the research and 

development of the AGILE system designs. This document includes metric tables along with 

links that provide additional information related to specific metrics.  These links are for 

descriptive purposes only and while each workflow will include the general computation, it may 

not employ the specific methods or approaches discussed in the link. Performers are always free 

to implement the general computation as best suited for their architecture. However, these links 

should help when the proposer determines the estimated performance for each entry in the metric 

tables. 

Introduction 

Today’s explosive data growth has ushered in a new generation of HPC applications that 

transform massive, unstructured, heterogeneous data streams into actionable knowledge.  Data is 

increasing exponentially in volume, velocity, variety, and complexity. It is often sparse and 

stored in structures with poor data locality.  In many scenarios, data arrives continuously and 

must be processed and stored concurrently with analysis.  Processes that ingest, transform, and 

store data (ITS) can no longer be ignored as in many scenarios they account for a significant 

fraction of the overall execution time and consume a significant portion of machine resources. 

Given the nature of data analytic applications, benchmarks such as LINPACK, Graph500, and 

MLBench – which measure individual computations in insolation without consideration of ITS 

processes, the reorganization and movement of data between computational components, and the 

reporting of results – cannot measure the true performance and scalability of real-world analytic 

applications.  Consequently, AGILE has adopted a three-tier, holistic evaluation process to 

measure the performance and scalability of proposed hardware and software system designs.  

The three tiers are: end-to-end workflows, stand-alone kernels of critical workflow components, 

and industry standard benchmarks. 

The top tier comprises four end-to-end workflows in subject matters important to the IC: 

1) Knowledge Graphs [1] 

2) System and Event Pattern Detection [2] 

3) Classification of Streaming Data [3] 

4) Network and Cyber-physical Systems [4] 

Each workflow implements a specific scenario from input to output and may have multiple 

modes of operations.  For example, the System and Event Pattern Detection workflow has three 

modes returning, respectively, exact pattern matches, approximate pattern matches, and partial 

matches of sub patterns as new data is added to the world graph.  For each workflow we will 

release a problem statement, task graph, reference implementation in a high-level programming 

language, and input/output files at different scales.  For each workflow, a test program will be 

provided. 



 

 

The workflows comprise different types of computations and ingest both static and streaming 

data sets.  For example, the Knowledge Graph workflow includes both machine learning and 

graph methods.  The Classification of Streaming Data consumes multiple data streams and 

requires that the data and processing rates are commensurate, i.e., no data packets are dropped.  

The Network and Cyber-physical Systems workflow implements a game playing scenario in 

which red and blue team moves and reconfiguration of the system must occur within strict time 

limits.  The workflows will require performers to demonstrate the performance of different data 

structures, parallel computing constructs, and synchronization operations. 

The second tier are subsets of the workflow task graphs, referred to as kernels, that measure the 

key rates listed in the Workflow Metric Tables for each subject matter area.  Measuring a rate 

may require execution of more than one task; for example, Kernel 1 of Workflow 1 comprises 

four tasks (see Figure 2).  And a particular task may be used in measuring more than one rate; for 

example, the Graph Neural Network Model task is used in Kernels 2, 3, and 4 of Workflow 1 

(see Figures 2, 3, and 4). We will release complete codes and data sets for each kernel. We will 

also provide a test program for each code. 

Since it may be challenging for performers to execute an entire workflow or kernel in the early 

phases of the project, we will release reference implementations for some individual workflow 

tasks, referred to as derived kernels, their inputs and outputs, and the organization of the data at 

the conclusion of the prior task in the workflow.  Any reported execution time for a derived 

kernel must include the time the code takes to reorganize or move data between the conclusion of 

the prior task to the start of the derived kernel under consideration.  No free lunch!!! 

Finally, the AGILE program will use three industry standard benchmarks: 

 Breadth First Search (BFS) - https://graph500.org/ 

 Triangle Counting - http://graphchallenge.mit.edu/ 

 Jaccard Coefficients - https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7529958 

These three kernels (benchmarks) provide performers a quick start and a way to compare the 

performance and scalability of their novel designs relative to current systems.  Table 1 lists the 

goal for AGILE system designs for each kernel at different scales. This table appears in Section 

A.2.3 of the BAA as Table A.2.3-5. 

Benchmark 

Metric 

Target Metrics 

Scale 36 Scale 42 Report 

Breadth First Search 

(BFS) 
1 GTEPS/core 1 GTEPS/core 

Traversed edges 

per second (TEPS) 

Triangle Counting 1 M triangles/sec/core 1 M triangles/sec/core 

Number of 

triangles & 

number of 2-paths 

https://graph500.org/
http://graphchallenge.mit.edu/
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7529958


 

 

Benchmark 

Metric 

Target Metrics 

Scale 36 Scale 42 Report 

Jaccard Coefficients 
1 M 

coefficients/sec/core 

1 M 

coefficients/sec/core 

Number of Jaccard 

Coefficients & 

number of Jaccard 

Coefficients per 

second 

GTEPS = 109 traversed edges per second 

M = 109 

Table 1 – Industry standard benchmark metrics 

We will release links to reference implementations and standard data sets.  Please see the 

Industry Standard Benchmark document for more information. 

WORKFLOW 1 – Knowledge – Groups, Relationships, & Interests  

Three important questions asked of Knowledge Graphs are: vertex classification, link prediction, 

and multi-hop reasoning.  A formal problem definition is: 

Let G = (V, E, CV, EV) be a property graph where V is a set of vertices, E is a set of edges, CV is 

the set of vertex property labels, and CE is the set of edge property labels. Compute embeddings 

for V and E, and then train a graph neural network model  for G, and models ’ and ” such 

that 

 ’: maps a vertex in V to a label in CV. 

 ”: maps two vertices in V to a label in CE. 

Then solve separately the following three problems: 

1) Vertex Classification: Given an unlabeled vertex s in V, return ’ (s). [5] 

2) Link Prediction: Given vertices s and t in V, return ” (s, t). [6] 

3) Multi-hop Reasoning: Given vertices s and t in V and an edge label p in CE, return the K 

best paths in G from s to t with length less than Lmax as scored by . [7] 

Table 2 lists the current rates and AGILE targets for constructing the knowledge graph, 

computing a model of the graph, and the time to classify vertices, predict relationships, and 

return the best paths between two vertices.  Current rates are for knowledge graphs of ten billion 

records whereas the AGILE target is for 1 trillion records (100x current size). This table appears 

in Section A.2.3 of the BAA as Table A.2.3-1. 

The first row (kernel) of the table measures the time to read data records, transform the raw data, 

resolve vertex and edge ambiguities, and build-out the common internal data structures used by 

downstream tasks.  Row 2 measures the time to compute vertex and edge embeddings and to 

learn graph neural network (GNN) models for vertex classification, edge prediction, and to score 

paths [8]. 



 

 

The third and fourth rows of the table measure the time to classify vertices and edges and the 

fifth row measures the time to return the best paths given two vertices in the graph and an edge 

type.  The time reported includes the time to learn the specific GNN model for the problem. 

Metric Today AGILE Target 

Data ingestion rate 

0.1 G 
data-elements per 

second from a 

Single source, 

single data type 

10 G 

data-elements per 

second from 

3 or more sources 

and data types 

(100x faster for 3 

sources) 

Time to learn embedding (Graph Size > 1 PB) 1,440 minutes 
30 minutes 

(48x faster) 

Time to classify vertices and edges > 1,440 minutes 
30 minutes 

(> 48x faster) 

Time to predict and infer new relationship > 1,440 minutes 
30 minutes 

(> 48x faster) 

Time to reason about higher-order relationships 

using multi-hop reasoning 

1 – 2 hops (exact 

matches) in 30 

minutes 

3 – 5 hops 

(approximate/fuzzy  

matches) in 1  

minute 

(30x faster) 

Table 2 – Metric table for Workflow 1 

Figure 1 depicts a task graph for Workflow 1 and Figures 2 – 5 map the components of the 

workflow to the rows of metric tables (the kernels).  Data records are read from a formatted file, 

processed, and stored in internal data structures.  If an edge record references an unknown 

vertex, the new vertex is processed and stored.  A graph is then constructed from the data 

structures, which is passed to downstream tasks that compute embeddings and models, classify 

vertices, predict edge labels, and perform multi-hop reasoning. 



 

 

 

Figure 1 – A task graph for Workflow 1 

 

 



 

 

 

Figure 2 – Workflow 1, Kernels 1 and 2 

 

 

Figure 3 – Workflow 1, Kernel 2 

 

 



 

 

 

Figure 4 – Workflow 1, Kernel 4 

 

 

Figure 5 – Workflow 1, Kernel 5 

A possible task graph implementing multi-hop reasoning is shown in Figure 6.  Given two 

vertices, S and T, and a relationship P, return the best K paths from S to T as measured by the 

GNN model .  Partial candidate paths from S to T are stored in the vector PATHS.  Initially, the 

vector has a single candidate path {S}.  For every candidate path of length less than Lmax, the 

neighbors of the last vertex on the path are examined.  If the vertex is already on the path, the 

vertex is ignored (no loops) and the next neighbor is examined.  If the neighbor is T, the path has 

reached the terminator and it is pushed to the array variable RESULTS.  If the neighbor is not T, 

the path is scored using , and the path and its score are pushed to SCORES.  After all neighbors 

are examined, SCORES is sorted in descending order by the scores and the top B highest scoring 

paths are pushed to PATHS to be processed on the next iteration.  An implementation of the 

computation written in C++ using STL data structures is shown in Figure 7. 



 

 

 

Figure 6 – Task graph for multi-hop reasoning 

 
 
 
 

using vertexVec = std::vector <vertex>; 
using paths_t   = std::vector <vertexVec>; 
using scorePair = std::pair <double, vertexVec>; 
 
bool greaterScore(scorePair & a, scorePair & b) { return a.first > b.first; } 
 
Results_t GreedyReasoning(Params_t params, Embeddings_t embeddings, Graph_t graph) { 
  vertex S = params.S; 
  vertex T = params.T; 
  paths_t results = []; 
  paths_t new_paths = [ ]; 
  paths_t old_paths = [ [S] ]; 
 
  while (old_paths.size() > 0) { 
 
     for (vertexVec & path : old_paths) { 
         if (path.size() == params.max_path_length) continue; // reached maximum length 
 
         vertex last = path[-1]; 
         std::vector < std::pair<double, vertexVec> > scores; 
 
         for (vertex x : Neighbors(last)) { 
             if (path.find(x) != path.end()) continue;            // x is already in path 
 
             vertexVex cand_path = path; 
             cand_path.push_back(x); 
 
             if (x == T) {results.push_back(path); continue;}     // t reached, push to results 
 
             double score = computeScore(path, T, embeddings, graph); 
             scores.push_back( std::make_pair(score, path) ); 
         } 
 
         std::sort(scores.begin(), scores.end(), greaterScore); 



 

 

         if (scores.size() > params.B) scores.resize(b);          // keep best B paths 
         for (auto score : scores) new_paths.push_back(score.second); 
     } 
 
     std::swap(new_paths, old_paths); 
  } 
 
  // score results from best to worse 
  // if (results.size > params.N) results.resize(params.N);     // keep best K results 
  // print results 
} 

Figure 7 – A C++ implementation for ranking multi-hop reasoning paths 

 

WORKFLOW 2 – Detection - System and Event Patterns 

 

Workflow 2 performs exact, approximate, and partial matching of a pattern graph against a world 

graph.  A formal problem statement is: 

Let G = (V, E, CV, EV) be a property graph where V is a set of vertices, E is a set of edges, CV is 

the set of vertex property labels, and CE is the set of edge property labels. Let P be a pattern 

graph and let {T1, T2, … TK} be K subgraphs of P such that their union is P.  Then solve 

separately, the following three problems: 

1) Exact Matching: Find all instances of P in G. [9] 

2) Approximate Matching: Return the N closest matches of P in G as measured by some 

graph edit function. [9] 

3) Partial Matching: As new data is added to G, alert when a subgraph Ti appears in G. [10] 

Table 3 lists the current rates and AGILE targets for the kernels of Workflow 2.  This table 

appears in Section A.2.3 of the BAA as Table A.2.3-2. Current rates are for graphs of ten billion 

records whereas the AGILE target is for 1 trillion records (100x current size).  The first kernel, 

data ingestion rate, measures the time to read data records, transform the raw data, resolve vertex 

and edge ambiguities and build-out the common internal data structures used by downstream 

tasks.  The second kernel measures the rate at which streaming data records can be read, their 

data transformed, vertex and edge ambiguities resolved and added to the common internal data 

structures used by downstream tasks.  This kernel must run concurrently with downstream tasks 

requiring those tasks to work correctly when data is being inserted, deleted, or modified. 

Rows 3 and 4 measure the time to complete partial, exact, and approximate pattern matching.  

Given a data graph G, pattern graph P, and a set of subgraphs of P, Kernel 3 measures the time 

to identify the emergence of sub patterns and combinations of sub patterns of P in the data graph 

as new data are added.  The exact and approximate kernels process a static graph and return all 

exact matchings of P and the top K approximate matches of P as scored by some graph edit 

function. 

The fifth row measures the time for partial, exact, and approximate matching of more complex 

patterns comprising multiple time and location features. 



 

 

 

Metric Today AGILE Target 

Size of graph 0.01 PB 
10 PB 

(1000x larger) 

Data ingestion rate 

0.1 G data-elements 

per second from a 

single source, 

single data type 

10 G data-elements 

per second from a 

three or more 

sources and data 

types 

(100x faster for 3 

sources) 

Insert/Delete/Modify rate for vertices and edges 
0.01 G edits / 

second (batched) 

10 G edits / 

second (continuous) 

(1000x faster) 

Pattern Detection per minute 
Single event, linear 

paths, exact match 

Multiple events, 

branches, 

prioritized 

approximate/fuzzy  

matching 

Incremental analysis NOT DONE 
Commensurate with 

data rate 

Time to complete multiple day / multiple location 

queries 
NOT DONE 

Completed in 

minutes 

Table 3 – Metric Table for Workflow 2 

Figure 8 depicts a task graph for Workflow 2 and Figures 9 and 10 map the rows of Table 3 to 

kernels.  Data records are read from a formatted file, processed, and stored in internal data 

structures.  If an edge record references an unknown vertex, the new vertex is processed and 

stored.  A world graph is then constructed from the data structures against which the Exact 

Matching and Approximate Matching task (the third row of boxes) compute matches of the 

pattern graph P against G.  For approximate matching, we employ an iterative belief propagation 

method that optimally associates of vertices and edges in G with those in P. 

The bottom set of boxes depicts a streaming data scenario in which data records are continuously 

read, processed, and added to the world graph.  The Partial Matching task runs concurrently 

admitting alerts whenever a subgraph Ti of P emerges in G’. 



 

 

Figure 11 depicts a possible task graph for Exact Matching.  Let the pattern graph P be expressed 

as a linear sequence of terms and filters as shown in Figure 12, then Exact Match processes the 

terms in order by recursively calling Process Term.  Upon finding an instance of the final term 

that satisfies the term’s filter, RESULT holds a match of P. 

Figure 12 shows a pattern graph of three netflow edges and an equivalent expression of three 

terms and filters.  The initial call to Process Term will consider each netflow edge in G and 

recursively call Process Term for every edge with source port equal to 5.  Say edge 

{src = v1, dst = v2, src_port = 5, time = 22.5} 

is one such edge.  The recursive call will consider each netflow edge with source node v2 and 

recursively call Process Term for each edge with source port equal to 5 and time greater than 

22.5.  Say edge 

{src = v2, dst = v3, src_port = 5, time = 23.8} 

is one such edge.  The third recursive call will consider each netflow edge with source node v1 

and destination node v3.  Any edge with source port equal to 8 and time greater than 22.5 and 

less than 23.8, completes a match of P. 

 

 

Figure 8 – A task graph for Workflow 2 

 

 



 

 

 

Figure 9 – Workflow 2, Kernels 1, 4, and 5 

 

Figure 10 – Workflow 2, Kernels 2 and 3 

 



 

 

 

Figure 11 – Task graph for exact matching 



 

 

 

Figure 12 – A netflow pattern of three connections 

WORKFLOW 3 – Sequence Data – Identification and Clustering  

Classification of sequence data occurs in many forms depending on the type of data: netflow 

records, sensor data, voice recordings, emails, blogs, etc.  Important performance metrics are 

listed in Table 4.  This table appears in Section A.2.3 of the BAA as Table A.2.3-3. If a system is 

unable to process records commensurate with the arrival rate, then records are dropped degrading 

analysis. 

The first row (kernel) of table measures the time to read data records, transform the raw data, 

resolve vertex and edge ambiguities, and build-out the common internal data structures used by 

downstream tasks.  Row 2 measures the rate at which records can be processed. Ideally, the rate 

is equivalent to the ITS rate measured in Row 1; if so, then no records are dropped. 

Row 3 measures the time to compute a similarity graph of records using methods such as Jaccard 

Index [11] and row 4 measures the time to cluster the graph into communities of similar features 

or functionalities [12]. The fifth row measures the time to classify new records and recognize the 

emergence of new communities [13], and the final kernel measures the time to compute 

uncertainties and process alerts when communities merge, divide, or grow beyond a certain 

threshold [14]. Rates listed in rows 3, 4, and 5 for Today assume a graph of 10 billion vertices 

and100 billion edges running on departmental size cluster. For the same rows, the AGILE Target 

rates assume a graph of 1 trillion vertices and 100 trillion edges. 



 

 

A problem description, task graph, and kernel specifications will be available after the start of 

the AGILE program. 

Metric Today AGILE Target 

Data ingestion rate 

1 M records per 

second from a 

single source 

10 M records per 
second from 3 or 

more sources 

(10x faster for 3 

sources) 

Records processing rate 0.1 M per second 
10 M per second 

(100x faster) 

Time to construct similarity graphs using 

metrics such as Jaccard index 
400 hours 

6 hours 

(67x faster) 

Time to cluster similarity networks 500 hours 
10 hours 

(50x faster) 

Time to predict labels (functions) of new 

sequences 
200 hours 

4 hours 

(50x faster) 

Time to estimate uncertainties of labels and 

functions, and prioritize alerts 
NOT DONE Completed 

Table 4 – Metric Table for Workflow 3 

WORKFLOW 4 – Network -  Cyber-physical Systems 

Table 5 lists the important rates for modeling network and cyber-physical systems.  This table 

appears in Section A.2.3 of the BAA as Table A.2.3-4. The first rate measures the time to 

construct a model of a cyber-physical system using game-theoretic means.  The second and third 

kernels measure the time to identify the K must influential nodes in the model using a linear cost 

function [15] and a time-dependent, non-linear cost function [16], respectively. 

 

The fourth [17] and fifth kernel implement a game playing scenarios where red and blue teams 

make alternating moves attacking and defending the system.  The kernels measure the time to 

analyze the system, chose among alternate moves, propagate model changes, and issue alerts of 

imminent breaches or collapse of subnetworks. 

A problem description, task graph, and kernel specifications will be available at the end of 

March 2022. 



 

 

Metric Today AGILE Target 

Construct 1 PB graph through game theoretic 

modeling 
120 minutes 

2 minutes 

(60x faster) 

Identification of top k influential nodes  (simple 

model) 
60 minutes 

1 minute 

(60x faster) 

 Identification of top k influential nodes 

(enhanced model) 
600 minutes 

30 minutes 

(20x faster) 

Propagate labels/confidence score 120 minutes 
2 minutes 

(60x faster) 

Incremental analysis NOT DONE 
Never recomputed 

from scratch 

Table 5 – Metric Table for Workflow 4 
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