

AGILE Program Workflows

Purpose

The purpose of this document is to describe the four AGILE Program workflows, plus their

derived kernels, and three industry standard benchmarks that will drive the research and

development of the AGILE system designs. This document includes metric tables along with

links that provide additional information related to specific metrics. These links are for

descriptive purposes only and while each workflow will include the general computation, it may

not employ the specific methods or approaches discussed in the link. Performers are always free

to implement the general computation as best suited for their architecture. However, these links

should help when the proposer determines the estimated performance for each entry in the metric

tables.

Introduction

Today’s explosive data growth has ushered in a new generation of HPC applications that

transform massive, unstructured, heterogeneous data streams into actionable knowledge. Data is

increasing exponentially in volume, velocity, variety, and complexity. It is often sparse and

stored in structures with poor data locality. In many scenarios, data arrives continuously and

must be processed and stored concurrently with analysis. Processes that ingest, transform, and

store data (ITS) can no longer be ignored as in many scenarios they account for a significant

fraction of the overall execution time and consume a significant portion of machine resources.

Given the nature of data analytic applications, benchmarks such as LINPACK, Graph500, and

MLBench – which measure individual computations in insolation without consideration of ITS

processes, the reorganization and movement of data between computational components, and the

reporting of results – cannot measure the true performance and scalability of real-world analytic

applications. Consequently, AGILE has adopted a three-tier, holistic evaluation process to

measure the performance and scalability of proposed hardware and software system designs.

The three tiers are: end-to-end workflows, stand-alone kernels of critical workflow components,

and industry standard benchmarks.

The top tier comprises four end-to-end workflows in subject matters important to the IC:

1) Knowledge Graphs [1]

2) System and Event Pattern Detection [2]

3) Classification of Streaming Data [3]

4) Network and Cyber-physical Systems [4]

Each workflow implements a specific scenario from input to output and may have multiple

modes of operations. For example, the System and Event Pattern Detection workflow has three

modes returning, respectively, exact pattern matches, approximate pattern matches, and partial

matches of sub patterns as new data is added to the world graph. For each workflow we will

release a problem statement, task graph, reference implementation in a high-level programming

language, and input/output files at different scales. For each workflow, a test program will be

provided.

The workflows comprise different types of computations and ingest both static and streaming

data sets. For example, the Knowledge Graph workflow includes both machine learning and

graph methods. The Classification of Streaming Data consumes multiple data streams and

requires that the data and processing rates are commensurate, i.e., no data packets are dropped.

The Network and Cyber-physical Systems workflow implements a game playing scenario in

which red and blue team moves and reconfiguration of the system must occur within strict time

limits. The workflows will require performers to demonstrate the performance of different data

structures, parallel computing constructs, and synchronization operations.

The second tier are subsets of the workflow task graphs, referred to as kernels, that measure the

key rates listed in the Workflow Metric Tables for each subject matter area. Measuring a rate

may require execution of more than one task; for example, Kernel 1 of Workflow 1 comprises

four tasks (see Figure 2). And a particular task may be used in measuring more than one rate; for

example, the Graph Neural Network Model task is used in Kernels 2, 3, and 4 of Workflow 1

(see Figures 2, 3, and 4). We will release complete codes and data sets for each kernel. We will

also provide a test program for each code.

Since it may be challenging for performers to execute an entire workflow or kernel in the early

phases of the project, we will release reference implementations for some individual workflow

tasks, referred to as derived kernels, their inputs and outputs, and the organization of the data at

the conclusion of the prior task in the workflow. Any reported execution time for a derived

kernel must include the time the code takes to reorganize or move data between the conclusion of

the prior task to the start of the derived kernel under consideration. No free lunch!!!

Finally, the AGILE program will use three industry standard benchmarks:

 Breadth First Search (BFS) - https://graph500.org/

 Triangle Counting - http://graphchallenge.mit.edu/

 Jaccard Coefficients - https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7529958

These three kernels (benchmarks) provide performers a quick start and a way to compare the

performance and scalability of their novel designs relative to current systems. Table 1 lists the

goal for AGILE system designs for each kernel at different scales. This table appears in Section

A.2.3 of the BAA as Table A.2.3-5.

Benchmark

Metric

Target Metrics

Scale 36 Scale 42 Report

Breadth First Search

(BFS)
1 GTEPS/core 1 GTEPS/core

Traversed edges

per second (TEPS)

Triangle Counting 1 M triangles/sec/core 1 M triangles/sec/core

Number of

triangles &

number of 2-paths

https://graph500.org/
http://graphchallenge.mit.edu/
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7529958

Benchmark

Metric

Target Metrics

Scale 36 Scale 42 Report

Jaccard Coefficients
1 M

coefficients/sec/core

1 M

coefficients/sec/core

Number of Jaccard

Coefficients &

number of Jaccard

Coefficients per

second

GTEPS = 109 traversed edges per second

M = 109

Table 1 – Industry standard benchmark metrics

We will release links to reference implementations and standard data sets. Please see the

Industry Standard Benchmark document for more information.

WORKFLOW 1 – Knowledge – Groups, Relationships, & Interests

Three important questions asked of Knowledge Graphs are: vertex classification, link prediction,

and multi-hop reasoning. A formal problem definition is:

Let G = (V, E, CV, EV) be a property graph where V is a set of vertices, E is a set of edges, CV is

the set of vertex property labels, and CE is the set of edge property labels. Compute embeddings

for V and E, and then train a graph neural network model  for G, and models ’ and ” such

that

 ’: maps a vertex in V to a label in CV.

 ”: maps two vertices in V to a label in CE.

Then solve separately the following three problems:

1) Vertex Classification: Given an unlabeled vertex s in V, return ’ (s). [5]

2) Link Prediction: Given vertices s and t in V, return ” (s, t). [6]

3) Multi-hop Reasoning: Given vertices s and t in V and an edge label p in CE, return the K

best paths in G from s to t with length less than Lmax as scored by . [7]

Table 2 lists the current rates and AGILE targets for constructing the knowledge graph,

computing a model of the graph, and the time to classify vertices, predict relationships, and

return the best paths between two vertices. Current rates are for knowledge graphs of ten billion

records whereas the AGILE target is for 1 trillion records (100x current size). This table appears

in Section A.2.3 of the BAA as Table A.2.3-1.

The first row (kernel) of the table measures the time to read data records, transform the raw data,

resolve vertex and edge ambiguities, and build-out the common internal data structures used by

downstream tasks. Row 2 measures the time to compute vertex and edge embeddings and to

learn graph neural network (GNN) models for vertex classification, edge prediction, and to score

paths [8].

The third and fourth rows of the table measure the time to classify vertices and edges and the

fifth row measures the time to return the best paths given two vertices in the graph and an edge

type. The time reported includes the time to learn the specific GNN model for the problem.

Metric Today AGILE Target

Data ingestion rate

0.1 G
data-elements per

second from a

Single source,

single data type

10 G

data-elements per

second from

3 or more sources

and data types

(100x faster for 3

sources)

Time to learn embedding (Graph Size > 1 PB) 1,440 minutes
30 minutes

(48x faster)

Time to classify vertices and edges > 1,440 minutes
30 minutes

(> 48x faster)

Time to predict and infer new relationship > 1,440 minutes
30 minutes

(> 48x faster)

Time to reason about higher-order relationships

using multi-hop reasoning

1 – 2 hops (exact

matches) in 30

minutes

3 – 5 hops

(approximate/fuzzy

matches) in 1

minute

(30x faster)

Table 2 – Metric table for Workflow 1

Figure 1 depicts a task graph for Workflow 1 and Figures 2 – 5 map the components of the

workflow to the rows of metric tables (the kernels). Data records are read from a formatted file,

processed, and stored in internal data structures. If an edge record references an unknown

vertex, the new vertex is processed and stored. A graph is then constructed from the data

structures, which is passed to downstream tasks that compute embeddings and models, classify

vertices, predict edge labels, and perform multi-hop reasoning.

Figure 1 – A task graph for Workflow 1

Figure 2 – Workflow 1, Kernels 1 and 2

Figure 3 – Workflow 1, Kernel 2

Figure 4 – Workflow 1, Kernel 4

Figure 5 – Workflow 1, Kernel 5

A possible task graph implementing multi-hop reasoning is shown in Figure 6. Given two

vertices, S and T, and a relationship P, return the best K paths from S to T as measured by the

GNN model . Partial candidate paths from S to T are stored in the vector PATHS. Initially, the

vector has a single candidate path {S}. For every candidate path of length less than Lmax, the

neighbors of the last vertex on the path are examined. If the vertex is already on the path, the

vertex is ignored (no loops) and the next neighbor is examined. If the neighbor is T, the path has

reached the terminator and it is pushed to the array variable RESULTS. If the neighbor is not T,

the path is scored using , and the path and its score are pushed to SCORES. After all neighbors

are examined, SCORES is sorted in descending order by the scores and the top B highest scoring

paths are pushed to PATHS to be processed on the next iteration. An implementation of the

computation written in C++ using STL data structures is shown in Figure 7.

Figure 6 – Task graph for multi-hop reasoning

using vertexVec = std::vector <vertex>;
using paths_t = std::vector <vertexVec>;
using scorePair = std::pair <double, vertexVec>;

bool greaterScore(scorePair & a, scorePair & b) { return a.first > b.first; }

Results_t GreedyReasoning(Params_t params, Embeddings_t embeddings, Graph_t graph) {
 vertex S = params.S;
 vertex T = params.T;
 paths_t results = [];
 paths_t new_paths = [];
 paths_t old_paths = [[S]];

 while (old_paths.size() > 0) {

 for (vertexVec & path : old_paths) {
 if (path.size() == params.max_path_length) continue; // reached maximum length

 vertex last = path[-1];
 std::vector < std::pair<double, vertexVec> > scores;

 for (vertex x : Neighbors(last)) {
 if (path.find(x) != path.end()) continue; // x is already in path

 vertexVex cand_path = path;
 cand_path.push_back(x);

 if (x == T) {results.push_back(path); continue;} // t reached, push to results

 double score = computeScore(path, T, embeddings, graph);
 scores.push_back(std::make_pair(score, path));
 }

 std::sort(scores.begin(), scores.end(), greaterScore);

 if (scores.size() > params.B) scores.resize(b); // keep best B paths
 for (auto score : scores) new_paths.push_back(score.second);
 }

 std::swap(new_paths, old_paths);
 }

 // score results from best to worse
 // if (results.size > params.N) results.resize(params.N); // keep best K results
 // print results
}

Figure 7 – A C++ implementation for ranking multi-hop reasoning paths

WORKFLOW 2 – Detection - System and Event Patterns

Workflow 2 performs exact, approximate, and partial matching of a pattern graph against a world

graph. A formal problem statement is:

Let G = (V, E, CV, EV) be a property graph where V is a set of vertices, E is a set of edges, CV is

the set of vertex property labels, and CE is the set of edge property labels. Let P be a pattern

graph and let {T1, T2, … TK} be K subgraphs of P such that their union is P. Then solve

separately, the following three problems:

1) Exact Matching: Find all instances of P in G. [9]

2) Approximate Matching: Return the N closest matches of P in G as measured by some

graph edit function. [9]

3) Partial Matching: As new data is added to G, alert when a subgraph Ti appears in G. [10]

Table 3 lists the current rates and AGILE targets for the kernels of Workflow 2. This table

appears in Section A.2.3 of the BAA as Table A.2.3-2. Current rates are for graphs of ten billion

records whereas the AGILE target is for 1 trillion records (100x current size). The first kernel,

data ingestion rate, measures the time to read data records, transform the raw data, resolve vertex

and edge ambiguities and build-out the common internal data structures used by downstream

tasks. The second kernel measures the rate at which streaming data records can be read, their

data transformed, vertex and edge ambiguities resolved and added to the common internal data

structures used by downstream tasks. This kernel must run concurrently with downstream tasks

requiring those tasks to work correctly when data is being inserted, deleted, or modified.

Rows 3 and 4 measure the time to complete partial, exact, and approximate pattern matching.

Given a data graph G, pattern graph P, and a set of subgraphs of P, Kernel 3 measures the time

to identify the emergence of sub patterns and combinations of sub patterns of P in the data graph

as new data are added. The exact and approximate kernels process a static graph and return all

exact matchings of P and the top K approximate matches of P as scored by some graph edit

function.

The fifth row measures the time for partial, exact, and approximate matching of more complex

patterns comprising multiple time and location features.

Metric Today AGILE Target

Size of graph 0.01 PB
10 PB

(1000x larger)

Data ingestion rate

0.1 G data-elements

per second from a

single source,

single data type

10 G data-elements

per second from a

three or more

sources and data

types

(100x faster for 3

sources)

Insert/Delete/Modify rate for vertices and edges
0.01 G edits /

second (batched)

10 G edits /

second (continuous)

(1000x faster)

Pattern Detection per minute
Single event, linear

paths, exact match

Multiple events,

branches,

prioritized

approximate/fuzzy

matching

Incremental analysis NOT DONE
Commensurate with

data rate

Time to complete multiple day / multiple location

queries
NOT DONE

Completed in

minutes

Table 3 – Metric Table for Workflow 2

Figure 8 depicts a task graph for Workflow 2 and Figures 9 and 10 map the rows of Table 3 to

kernels. Data records are read from a formatted file, processed, and stored in internal data

structures. If an edge record references an unknown vertex, the new vertex is processed and

stored. A world graph is then constructed from the data structures against which the Exact

Matching and Approximate Matching task (the third row of boxes) compute matches of the

pattern graph P against G. For approximate matching, we employ an iterative belief propagation

method that optimally associates of vertices and edges in G with those in P.

The bottom set of boxes depicts a streaming data scenario in which data records are continuously

read, processed, and added to the world graph. The Partial Matching task runs concurrently

admitting alerts whenever a subgraph Ti of P emerges in G’.

Figure 11 depicts a possible task graph for Exact Matching. Let the pattern graph P be expressed

as a linear sequence of terms and filters as shown in Figure 12, then Exact Match processes the

terms in order by recursively calling Process Term. Upon finding an instance of the final term

that satisfies the term’s filter, RESULT holds a match of P.

Figure 12 shows a pattern graph of three netflow edges and an equivalent expression of three

terms and filters. The initial call to Process Term will consider each netflow edge in G and

recursively call Process Term for every edge with source port equal to 5. Say edge

{src = v1, dst = v2, src_port = 5, time = 22.5}

is one such edge. The recursive call will consider each netflow edge with source node v2 and

recursively call Process Term for each edge with source port equal to 5 and time greater than

22.5. Say edge

{src = v2, dst = v3, src_port = 5, time = 23.8}

is one such edge. The third recursive call will consider each netflow edge with source node v1

and destination node v3. Any edge with source port equal to 8 and time greater than 22.5 and

less than 23.8, completes a match of P.

Figure 8 – A task graph for Workflow 2

Figure 9 – Workflow 2, Kernels 1, 4, and 5

Figure 10 – Workflow 2, Kernels 2 and 3

Figure 11 – Task graph for exact matching

Figure 12 – A netflow pattern of three connections

WORKFLOW 3 – Sequence Data – Identification and Clustering

Classification of sequence data occurs in many forms depending on the type of data: netflow

records, sensor data, voice recordings, emails, blogs, etc. Important performance metrics are

listed in Table 4. This table appears in Section A.2.3 of the BAA as Table A.2.3-3. If a system is

unable to process records commensurate with the arrival rate, then records are dropped degrading

analysis.

The first row (kernel) of table measures the time to read data records, transform the raw data,

resolve vertex and edge ambiguities, and build-out the common internal data structures used by

downstream tasks. Row 2 measures the rate at which records can be processed. Ideally, the rate

is equivalent to the ITS rate measured in Row 1; if so, then no records are dropped.

Row 3 measures the time to compute a similarity graph of records using methods such as Jaccard

Index [11] and row 4 measures the time to cluster the graph into communities of similar features

or functionalities [12]. The fifth row measures the time to classify new records and recognize the

emergence of new communities [13], and the final kernel measures the time to compute

uncertainties and process alerts when communities merge, divide, or grow beyond a certain

threshold [14]. Rates listed in rows 3, 4, and 5 for Today assume a graph of 10 billion vertices

and100 billion edges running on departmental size cluster. For the same rows, the AGILE Target

rates assume a graph of 1 trillion vertices and 100 trillion edges.

A problem description, task graph, and kernel specifications will be available after the start of

the AGILE program.

Metric Today AGILE Target

Data ingestion rate

1 M records per

second from a

single source

10 M records per
second from 3 or

more sources

(10x faster for 3

sources)

Records processing rate 0.1 M per second
10 M per second

(100x faster)

Time to construct similarity graphs using

metrics such as Jaccard index
400 hours

6 hours

(67x faster)

Time to cluster similarity networks 500 hours
10 hours

(50x faster)

Time to predict labels (functions) of new

sequences
200 hours

4 hours

(50x faster)

Time to estimate uncertainties of labels and

functions, and prioritize alerts
NOT DONE Completed

Table 4 – Metric Table for Workflow 3

WORKFLOW 4 – Network - Cyber-physical Systems

Table 5 lists the important rates for modeling network and cyber-physical systems. This table

appears in Section A.2.3 of the BAA as Table A.2.3-4. The first rate measures the time to

construct a model of a cyber-physical system using game-theoretic means. The second and third

kernels measure the time to identify the K must influential nodes in the model using a linear cost

function [15] and a time-dependent, non-linear cost function [16], respectively.

The fourth [17] and fifth kernel implement a game playing scenarios where red and blue teams

make alternating moves attacking and defending the system. The kernels measure the time to

analyze the system, chose among alternate moves, propagate model changes, and issue alerts of

imminent breaches or collapse of subnetworks.

A problem description, task graph, and kernel specifications will be available at the end of

March 2022.

Metric Today AGILE Target

Construct 1 PB graph through game theoretic

modeling
120 minutes

2 minutes

(60x faster)

Identification of top k influential nodes (simple

model)
60 minutes

1 minute

(60x faster)

 Identification of top k influential nodes

(enhanced model)
600 minutes

30 minutes

(20x faster)

Propagate labels/confidence score 120 minutes
2 minutes

(60x faster)

Incremental analysis NOT DONE
Never recomputed

from scratch

Table 5 – Metric Table for Workflow 4

References

1. https://en.wikipedia.org/wiki/Knowledge_graph

2. https://en.wikipedia.org/wiki/Graph_matching

3. Brzezinski and Stefanowski, Stream Classification,

https://www.researchgate.net/publication/301349169_Stream_Classification

4. Lux and Budke, Playing with Complex Systems? The Potential to Gain Geographical System

Competence through Digital Gaming, Educ. Sci. 2020, 10(5),

130; https://doi.org/10.3390/educsci10050130

5. Kipf and Welling, Semi-Supervised Classification with Graph Convolutional Networks,

Proceedings of ICLR 2017, Toulon, France, 2017.

6. https://en.wikipedia.org/wiki/Link_prediction

7. Lin, Socher, and Xiong, Multi-Hop Knowledge Graph Reasoning with Reward Shaping,

Proceedings 2018 Conference on Empirical Methods in Natural Language Processing,

Brussels, Belgium, 2018.

8. Lengeling, Reif, Pearce, and Wittschko, A Gentle Introduction to Graph Neural Networks,

Google Research, https://distill.pub/2021/gnn-intro/.

9. Gallagher, Matching Structure and Semantics: A Survey on Graph-Based Pattern Matchine,

AAAI Fall Symposium: Capturing and Using Patterns for Evidence Detection, 2006.

10. Fan, et.al., Distributed Incremental Pattern Matching on Streaming Graph, SIGMOD ’11,

Athens Greece, 2011.

https://en.wikipedia.org/wiki/Knowledge_graph
https://en.wikipedia.org/wiki/Graph_matching
https://www.researchgate.net/publication/301349169_Stream_Classification
https://doi.org/10.3390/educsci10050130
https://en.wikipedia.org/wiki/Link_prediction
https://distill.pub/2021/gnn-intro/

11. Besta, Kanakagiri, et.al., Communication-Efficient Jaccard similarity for High-Performance

Distributed Genome Comparisons, Proceedings 2020 IEEE IPDPS, New Orleans, LA, 2020.

12. Fortunato, Community detection in graphs, Physics Reports, 486:3-5, February 2010.

13. Hollocou, Bonald, Maudet, and Legarge, A linear streaming algorithm for community

detection in very large network, Proceedings Knowledge Discovery and Data Mining,

Halifax, Canada, 2017.

14. Bertozzi and Merkurjev, Chapter 12 – Graph-based optimization approaches for machine

learning, uncertainty quantification and networks, Handbook of Numerical Analysis, 20,

2019.

15. Li, Fan, Wang, and Tan, Influence Maximization on Social Graphs: A Survey, In IEEE

Transactions on Knowledge and Data Engineering, 30:10, October 2018.

16. Yang and Pei, Influence Analysis in Evolving Networks: A Survey, , In IEEE Transactions on

Knowledge and Data Engineering, 33:3, March 2021.

17. Silver and Veness, Monte-Carlo Planning in Large POMDPs, Proceedings Advances in

Neural Information Processing Systems 23, NIPS 2010, Vancouver Canada, 2010.

